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1 Introduction

This bachelor thesis replicates and expands similar investigations that have been
an active field of research since at least 1996 [1], and has continued to present
day [2].

The project is based on numerical studies of a quantum mechanical model
of a diatomic molecule (section 2) – i.e. a molecule comprised of two atoms.
The objective is not to consider a specific molecule, but instead a particular
phenomenon that can occur in diatomic molecules.

In general, it is the vibration of the molecule along the axis connecting the
two atoms that is studied, and in detail, a stabilizing interference effect holding
the molecule together (section 2.4). Notice that there only exists one vibrational
degree of freedom in a diatomic molecule – along the axis connecting the two
atoms.

Figure 1: Illustration of molecular vibrations.

Depending on the electronic state – i.e. the configuration of electron wave func-
tions – the molecule can either exist in an attractive potential holding it together,
or a repulsive potential that will cause it to dissociate. Even if transitions be-
tween these states are allowed, there can exist favourable conditions where the
molecule is prevented to assume a state where it dissociates, and thus is stable
over longer time scales than you would believe from a näıve investigation. These
so called meta-stable states exist solely due to quantum interference effects and
cannot be explained in terms of classical models. Presenting the methods for
modelling the molecule, and finding such favourable conditions, is the main
discussion in this thesis (section 2.1 - 2.4, 3, 4, and results in 5.1).

After such favourable conditions are found, a model of interaction free mea-
surement is incorporated (section 2.5) to investigate a correlation between en-
tanglement and the meta-stable state (section 2.6, and results in 5.2). This
measurement is modelled with a quantized electromagnetic field, which causes
interactions with a third electronic state of the molecule. The new electronic
state will correspond a third potential for the molecular vibrations. However,
we will restrict the electromagnetic field to be of a single frequency that is not
resonant with the energy required to excite the molecule to the third electronic
state. Thus the state is prevented from being populated and the only remaining
effect is the impact of the electromagnetic coupling on the initial potentials.

—

I have found that some foundational concepts in the
mathematical model of the molecule often are a bit

unclear. So I will begin section 2 with an outline the
underlying ideas in the construction of the model.

—
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2 A quantum mechanical model of the system

2.1 Representing the system with wave functions

To model the vibrations of a diatomic molecule we want to find the position
of the two nuclei as a function of time. Note that the nuclei are carrying close
to all the weight of the molecule. First we make life easy by ignoring rotations
and overall translations of the molecule. Then we can model the system in only
one dimension by choosing an appropriate coordinate system, and assign wave
functions to describe the positions of the nuclei (x1 and x2), see figure 2.

Figure 2: Modelling the position of two nuclei by their
respective coordinates x1 and x2.

However, such a starting point would be superfluous. When looking at
vibrations the only interesting part is the distance between the nuclei, and
therefore we would prefer to describe the molecule with the distance between
the nuclei and position of the centre of mass. Then we will have removed one
degree of freedom that we do not care about (the position of the entire molecule)
and there is only one left, as depicted in figure 3.

Figure 3: A center of mass model. X denoting the position of
the molecule and x the distance between the nuclei.

Doing a transformation from {x1, x2} to {x,X} will – for our purposes – most
importantly result in the wave function ψ(x), which will contain information of
the probability density to find a certain distance between the nuclei. This is the
one we will work with in this thesis! The other wave function φ(X) (describing
the probability density of the position of the entire molecule) will be disregarded
since it has no relevance here.

In this model we will also include two separate electronic states (i.e. two
different states of the electron wave functions) that the molecule can assume.
Each such state is represented by a unique potential (section 2.2) that the nuclei
will feel as they move. To keep track of which electronic state the molecule is
in, we consider two corresponding wave functions – ψ1(x, t) and ψ2(x, t) – and
the entire state of the molecule is descried by a vector composed of the wave
functions

|Ψ〉 =

[
ψ1

ψ2

]
(1)

3



The norm over the entire state is of course 1, since the probability that the
molecule is in either state must be 1.

〈Ψ|Ψ〉 =

∫
|ψ1|2 + |ψ2|2dx = 1 (2)

There are however some subtleties with normalization in numerical models. This
is discussed further in section 4.1.

2.2 Constructing the Hamiltonian

As mentioned in section 2.1, there are two electronic states for the molecule
corresponding to two potentials. The first is attractive and modelled by a Morse
potential [3] – illustrated by V11(x̂) in figure 4. When the molecule is in this
electronic state the atoms are bound together. (It could of course dissociate
but such high vibrational energies will not be simulated.) The second potential
is repulsive – illustrated by V22(x̂) in figure 5. When the molecule is in this
electronic state the distance between the nuclei would increase with time, and
the molecule dissociates.

Figure 4: Illustration of an
attractive Morse potential.

Figure 5: Illustration of a
repulsive exponential potential.

It is possible for the molecule to be in any of the two states, as well as in
superpositions of the two. Each state has (as mentioned in section 2.1) a wave
function associated with it. The point is then that, if the electron wave functions
corresponding to the two states have the same spatial symmetries – which we
will assume that they have – the molecule can transition between the states1.
Note that the system can only do so as the wave function approaches a region
where the two potentials have energies very close to each other. In practice – to
create a higher probability for transitions to occur – the curves of the potentials
should intersect and cross over at some point in this region.

The strength and position of this coupling between the states are modelled
by Gaussian functions, V12(x̂) and V21(x̂)2, centred at the intersection of the
potentials, i.e. at xc in figure 6. We naturally assume that the probability of

1Actually it depends on which process is creating the coupling between the electronic
states. If a matrix element for an operator is non zero – meaning that the states are symmetric
with respect to the operator – we have a coupling between the states. So if 〈Ψα|Â|Ψβ〉 6= 0

then Â is creating coupling between Ψα and Ψβ .
2V12(x̂) determines the probability of transition from state 2 into 1, and V21(x̂) determines

the probability in the opposite direction.
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transition is equal in both directions so V21(x̂) = V12(x̂), otherwise the Hamilto-
nian would not be Hermitian. To emphasize that they are equal we shall call the
coupling potential Vc(x̂). Note that the coupling is real (i.e. has no imaginary
component).

Figure 6: In the neighbourhood of xc, where V11 =V22, there is a
coupling Vc between the two states, modelled with a Gaussian.

With these representations of the potentials and the coupling between the
two states we can form our Hamiltonian for the two state system – using the
regular kinetic energy operator, and the reduced mass m of the molecule.

Ĥ = T̂ + V̂ =

[
p̂2/2m 0

0 p̂2/2m

]
+

[
V11(x̂) Vc(x̂)
Vc(x̂) V22(x̂)

]
(3)

2.3 Joining the parts in the Schrödinger equation

Like any non-relativistic quantum system, the evolution of our diatomic vibra-
tion is described by the Schrödinger equation.

i~
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 (4)

Inserting the state vector from equation (1), and the Hamiltonian from (3),
makes our model of the system complete.

i~
∂

∂t

[
ψ1

ψ2

]
=

[
p̂2/2m+ V11(x̂) Vc(x̂)

Vc(x̂) p̂2/2m+ V22(x̂)

] [
ψ1

ψ2

]
(5)

Unfortunately we will not be able to find a gorgeous analytical solution. The
potentials are quite complicated and the coupling between them makes it worse.
Instead, in section 3 we will be investigating a method of solving this problem
numerically, called the split operator method.

2.4 The path of the wave packet

Throughout this thesis the initial state of the system is quite similar. A Gaussian
wave packet has been places in the attractive Morse potential V11, illustrated in
figure 7. The wave packet is then propagated in time using the split operator
method (described in section 3). As the wave packet responds to the potential,
it will start moving towards the left and pass through the region where the
two states couple to each other, this will split up the wave packet and put the
molecule in a superposition of the two electronic states.
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Figure 7: Illustration of the initial state of the system. V11 and
V22 are the two electronic potentials. The dotted line gives an
idea of the width and position of the initial wave packet. The

dashed lines are the adiabatic potentials, obtained by
diagonalization of the potential matrix. Where the dashed lines
are visible signifies the region where the two states are coupled.

Figure 8: Illustration of the system at the later time (one half a
classical period). The wave packet has passed through the area
where the two electronic states couple and, as a result, split up

in a superposition of the two electronic states.

At half the classical period (a time corresponding to half the period of a
classical particle) the split wave packets have reached their turning points –
illustrated in figure 8 – and start moving back towards the right. Later, as
they return to the region where there is a coupling between the states, they will
interfere3, and the interference will determine whether the majority of the wave
packet will follow V11 and make the molecule more stable, or follow V22 and
make the molecule more likely to dissociate.

With finely tuned parameters for the potentials, we can find a meta-stable
behaviour where only a very small portion of the wave function ”leaks out” to
the right of the coupling area on the potential V22, essentially then returning
the state to its initial condition – illustrated in figure 7 – and the oscillation can
start over.

In practice there is a clear degrading in the shape of the wave packet after
a couple of periods, but the proportion of the wave function that ”leaks out”

3This requires of course that the potentials are tuned such that the wave packets return
into the region of the coupling at the same time.
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of the system remains low, and after sufficient time it is possible to observe
revivals in the shape of the wave function.

It is crucial for the meta-stable behaviour that we can create interference
between two recombining wave packets at the region of the coupling. Thus
if we were to perform any measurement that would collapse the superposition
of states (illustrated in figure 8) we would immediately lose the possibility of
interference, and the meta-stable behaviour would disappear. Just like in the
classic double slit experiment, the behaviour of the system is resting on our
ignorance of which path the particle is taking.

2.5 Interaction with a quantized electromagnetic field

Even though we cannot directly measure the electronic state of the system
without destroying the meta-stable state, quantum mechanics allows for gain-
ing some information about a system without fully collapsing it. This can be
accomplished by interaction free measurement. The details of such measurement
will not be investigated here, but they are outlined by Avshalom C. Elitzur and
Lev Vaidman [4].

The idea for our measurement is to create an entanglement between the state
of the molecule and the state of an electromagnetic field. Then we can perform
a measurement on the state of the field, and leave the molecule ”untouched”.
However – as we will see in section 5.2 – the more entanglement we have between
the field and the molecule, the more we will destroy the meta-stable state of the
molecule. There is always a trade-off – the more you want to know, the more
you will have to disturb.

The set-up is this: An electromagnetic field of a single polarisation and
mode ωc is applied to the molecule. We assume that the molecule has a third
electronic state – and a corresponding potential V33 – that is dipole coupled
to only the second electronic state – corresponding to V22. For simplicity we
further assume that the potentials V22 and V33 both have the same shape so that
their energy difference is not dependent on x. The energy difference of the two
states corresponds to a transitional frequency of ωa. This set-up is illustrated
in figure 9.

Figure 9: Schematic picture of potentials corresponding to
three electronic states, and a dipole coupling between the

second and third state.
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Then the interaction between energy levels can be described with the Jaynes-
Cummings model, as discussed in appendix A.4. Specifically we assume that
the detuning δ ..= ωa− ωc is large – i.e. the frequency of the electromagnetic
radiation ωc is far from resonant with the transitional frequency of the molecule,
ωa. This is the so called dispersive regime, and in appendix A.4.1 we find that
such a system will receive specific energy corrections on the two energy levels.

Ĥ
(n)
jc = ~

δ + g2n
δ

− g
2n
δ

 (6)

Here, δ is detuning, g is a parameter for the coupling strength of the interaction
between the electric field and the molecule, and n is the number of photons in
the field.

The Hamiltonian in (6) describes the energies of a two level system, where
the first diagonal term is the energy when the molecule is in the excited state,
and the second diagonal term correspond to the ground state. In our model the
ground state is represented by V22, and the excited state is V33 (see figure 9).
So, on the face of it, we need to add a third electronic state (corresponding to
V33) to our Hamiltonian in equation (5) (thus making it a 3×3 matrix), and then
incorporate the corrections from (6). But remember, we are operating in the
dispersive regime, and the third state will not be populated. Therefore there is
no need to keep it (and its correction) in our model, and we have returned to
the familiar 2×2 matrix – only now, we have introduced an energy correction
to the ground state (corresponding to V22).

i~
∂

∂t

[
ψ1

ψ2

]
=

[
p̂2/2m+ V11(x̂) Vc(x̂)

Vc(x̂) p̂2/2m+ V22(x̂)− ~ g
2n
δ

] [
ψ1

ψ2

]
(7)

In the end, the energy of the second electronic state depends on n, i.e. the
number of photons in the electromagnetic field.

However, n should not be taken to be a simple integer. It is experimentally
hard to create a field with one definite number of photons – especially when
that number grows large – so instead we will use a distribution of the states |n〉.
The easiest state to create in an experimental set-up is a coherent state, and
from the principles of quantum optics, and assuming that the electromagnetic
field is coherent, we can find the amplitudes for the different numbered states
|n〉, of a coherent state |α〉 (details are outlined by Göran Johansson and Thilo
Bauch [5]).

|α〉 =

∞∑
n=0

e−|a|
2/2 α

n

√
n!
|n〉 (8)

The parameter α is the eigenvalue of the annihilation operator â and it is a
complex number (not an observable). If we calculate the probability of finding
a particular number of photons |n〉 we will get a Poisson distribution.

Pn = |〈n|α〉|2 =

∣∣∣∣e−|a|2/2 αn√n!

∣∣∣∣2 = e−〈n〉
〈n〉n

n!
(9)
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So the complex amplitude α has a very simple reation to 〈n〉 (the average value
of n).

|α|2 = 〈n〉 (10)

The total initial state of the system is now the tensor product between the wave
function and the number of photons.

|Ψ〉 =

[
ψ1

ψ2

]
⊗
∞∑
n=0

e−|a|
2/2 α

n

√
n!
|n〉 (11)

Remembering that the coefficients squared correspond to a Poisson distribution
around some average 〈n〉, let us name them cn, and rewrite the total initial state
in a somewhat friendlier way.

|Ψ〉 =

∞∑
n=0

cn

[
ψ1

ψ2

]
⊗ |n〉 (12)

In theory, the state |n〉 is an infinite dimensional vector, but when working with
numerical models we can observe that the coefficients cn will quickly go to zero
as we go above the value n = 〈n〉, and at some point we can just truncate the
sum in (12) because the rest has a negligible effect. It is from this state that we
will be able to calculate the entanglement of the molecule with the field using
the formalism of density operators and von Neuman entropy that are briefly
discussed in the next section.

2.6 Evaluating entanglement with density operators and
von Neumann entropy

The details for the theory of density operators will not be presented here. In-
stead the reader is referred the to Reinhold Bertlmann [6] and Jens Eisert [7].
However, some theory is vital in order to motivate how entanglement is calcu-
lated in this thesis. So let us outline the key points with some examples.

A density operator ρ is constructed by taking the outer product of a state
vector.

ρ = |ψ〉〈ψ| (13)

This corresponds to a so called pure state. Adding further outer products of
linearly independent state vectors, we can also construct a density operator in
a so called mixed state.

ρ = α |ψ〉〈ψ| + β |φ〉〈φ| , α+ β = 1 (14)

This mixed state would be useful if we for instance tried to prepare an atom in
|ψ〉, but our atom preparation device was not perfect, and in 1% of the cases we
got |φ〉 instead. In that case we can represent the system by forming a mixed
state.

ρ = 0.99 |ψ〉〈ψ| + 0.01 |φ〉〈φ| (15)

This kind of description of a system requires the formalism of density operators,
since the usual state vectors cannot describe the situation above. If you tried
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doing something similar with state vectors you will not get a mixed state, instead
what you end up with is a superposition of states:

|Ψ〉 =
√

0.99 |ψ〉 +
√

0.01 |φ〉 (16)

This cannot describe the situation in (15) because we could construct another,
different, state with the same probabilities by changing the phase between |ψ〉
and |φ〉. So when we lack information about the phase factor one is forced to
introduce density operators, like in equation (15).

Now, consider a composite system made from two subsystems. That could
be for instance two distinct particles emitted in some reaction, an experimental
set-up and the rest of the universe, or a diatomic molecule and an electromag-
netic field (as in the case of this thesis). From the density operator describing
the total composite system it is possible to find how much information the first
subsystem has about the second, and vise versa. That is, the entanglement be-
tween the subsystems4. For simplicity in this example, let both the subsystems
be described by basis {|0〉 , |1〉}.

|ψ〉1 = a1 |0〉+ b1 |1〉 (17)

|ψ〉2 = a2 |0〉+ b2 |1〉 (18)

The total state is then formed from the tensor product5.

|Ψ〉 = |ψ〉1 ⊗ |ψ〉2 ..= |ψ1, ψ2〉 (19)

Then, depending on what state vector we begin with we have states with various
degrees of entanglement. Take for instance the situation where |ψ1, ψ2〉 is a
superposition of |0, 0〉 and |1, 1〉.

|Ψmax〉 =
1√
2

(
|0, 0〉+ |1, 1〉

)
(20)

ρmax =
1

2

(
|0, 0〉+ |1, 1〉

) (
〈0, 0|+ 〈1, 1|

)
(21)

From |Ψmax〉 we can see that if you would measure the first subsystem to be in
state |0〉 you know that the second will be in |0〉 too. So this comprise a simple
example of a composite system with entanglement. Now, a different example!

|Ψmin〉 =
1√
2

(
|0, 1〉+ |1, 1〉

)
(22)

ρmin =
1

2

(
|0, 1〉+ |1, 1〉

) (
〈1, 0|+ 〈1, 1|

)
(23)

4An entangled state is defined as a composite state where it is impossible to express the
total state as a product of the states of the subsystems.

5For the bra-state, the states for the sub-systems will be printed in reverse order: 〈ψ2, ψ1|.
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In this situation, if you measure the first subsystem you can get either |0〉 or
|1〉, but that has no bearing on the second subsystem which is always going to
be |1〉. Thus we can not have any entanglement in this system.

For the situations in (20) and (22) it is sufficient to just look at the states
to determine if there is entanglement in the system. But as we construct more
elaborate states for a composite system we need a way to quantify the amount
of entanglement – at least qualitatively – so we can say that some state has more
or less entanglement than some other state. This is done by taking the partial
trace – described in appendix A.3 – over one of the subsystems in question. If
the density operator that remains – the reduced density operator – has a mixed
state then there is entanglement in the system, and if the operator has a pure
state there is no entanglement. The more mixed a reduced density operator is,
the more entanglement we have between our two subsystems.

Let us do a simple demonstration of how this works by taking the partial
trace over the first state |ψ〉1, of ρmax and ρmin in equations (21) and (23), to
show that we get a mixed state from (21) and a pure state from (23).

ρ(2)
max = Tr1[ρmax] =

1∑
k=0

1〈k|
(

1

2

(
|0, 0〉+ |1, 1〉

) (
〈0, 0|+ 〈1, 1|

))
|k〉1 = (24)

=
1

2
|0〉2 2〈0| +

1

2
|1〉2 2〈1| (25)

This reduced density operator has two orthogonal terms, which means it is
impossible to rewrite as one term only, regardless of the basis. Thus it is a
mixed state, like in equation (14). This is consistent with our starting point of
having entanglement in the system. In fact it is maximally mixed (all possible
coefficients have the same value, 1/2).

Now let us try taking the partial trace of ρmin where we expect to see no
entanglement.

ρ
(2)
min = Tr(1)[ρmin] =

1∑
k=0

1〈k|
(

1

2

(
|0, 1〉+ |1, 1〉

) (
〈1, 0|+ 〈1, 1|

))
|k〉1 = (26)

= |1〉2 2〈1| (27)

This reduced density operator has only one term, which means it must be a
pure state – like in equation (13) – and there is no entanglement between the
subsystems.

To evaluate exactly how much mixed a reduced density operator is, we can
use the method of von Neumann entropy.

SvN ..= −Tr[ρ ln(ρ)] (28)

Here Tr[·] simply means calculating the total trace. If ρ is written in terms of
its eigenvectors, then (28) is easy to calculate from the eigenvalues {λ1, λ2, . . . }
of the density matrix ρ.

SvN ..= −
∑
k

λk ln(λk) (29)
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If the von Neumann entropy is zero we have a pure state, and no entanglement.
If instead the entropy increases, the entanglement in the compound system must
also be increasing, and the maximum value is reached when the eigenvalues are
equal.

—

The great mathematician Carl Friedrich Gauss is known
to have said ”No self-respecting architect leaves the

scaffolding in place after completing the building” when
answering to criticism about his work being hard to

follow and devoid of any motivations.

With this I thoroughly disagree. I make an effort to
erect as much scaffolding as possible around my work

and then make them accessible for climbing. Unlike real
buildings, in the metaphorical case you might want to
get up on the roof and inspect how the ceramic roofing

tiles were attached to the trusses.

—
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3 The split operator method

3.1 The time evolution operator

Reference for this section: Prof. Paola Cappellaro [8].
The goal here is to express a solution of the time dependent Schrödinger

equation in a form that is useful for numerical computation, given some initial
wave function.

Suppose that we could write the general time dependent solution ψ(t) in
terms of some initial state ψ0 = ψ(0) that a time dependent operator Û is
acting on to give us the state at a later time.

|ψ(t)〉 = Û(t) |ψ0〉 (30)

This would indeed be very useful. If the wave function is known at some initial
state ψ0, we can apply the operator Û(t) to find it at any later time.

However we need to make sure that equation (30) makes sense. In other
words it has to be a solution to the Schrödinger equation. Also, if it is a
solution then what does Û look like, and what are its properties? Let us begin
the investigation by simply inserting (30) into (4) to see what Û must look like
if (30) really was a solution.

i~
∂Û

∂t
|ψ0〉 = ĤÛ |ψ0〉 (31)

Remember that ψ0 is not a function of t so it just pops out of the partial time
derivative. If equation (31) should hold for any wave function ψ0 then we must
also have strict equality between the operators themselves on both sides. Thus
we can conclude that under the initial assumption that (30) solves (4) we must
have:

i~
∂Û

∂t
= ĤÛ (32)

This differential equation for Û has a simple solution, if we treat Û as an ordinary
function of t, and the Hamiltonian as an ordinary function independent of t.
Such a constraint on Ĥ would be quite reasonable since most systems we want
to investigate are autonomous. So observing this constraint on Ĥ we can write
down a solution.

Û = e−i
Ĥ
~ t (33)

But this does not immediately make sense. What does it mean with an expo-
nential function of an operator? Is this really a solution at all? Not to spoil the
exciting suspense, but it is! Closer investigations will follow shortly (section 3.2).
First we should observe that since the Hamiltonian is Hermitian (i.e. Ĥ† = Ĥ)
the following manipulation is possible.

Û Û† = e−i
Ĥ
~ tei

Ĥ
~ t = 1⇒ (34)

Û† = Û−1 (35)

So Û is a unitary operator6. This means that the operator preserves inner
products [9], and in particular the norm of a wave function. This is good news!

6A unitary operator is defined by having its complex conjugate being equal to its inverse.
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Actually it is required for this formalism to work since the wave function has to
stay normalized when the evolution operator is applied, and unitary operators
conserve that property of functions.

3.2 Making sense of the evolution operator

So, how should the time evolution operator that we found in equation (33) be
interpreted? What does it mean to put an operator in the exponent? Retreating
back to the series definition of the exponential will shed some clarity.

e−i
Ĥ
~ t ..= 1− i Ĥ

~
t− Ĥ2

2!~2
t2 + i

Ĥ3

3!~3
t3 +

Ĥ4

4!~4
t4 − . . . (36)

Great! This is something explicit. For each term we will just apply the Hamilto-
nian the appropriate number of times and multiply by the complex coefficient of
that term. Granted, we have to do that up to infinity, but at least the expression
now makes sense.

In fact, it is worth noting that this series expansion solves the differential
equation that we started with in equation (32). So we must argue that – this is
the actual solution, and the exponential is just a notation for the series.

What about the infinity? Computers do not handle those particularly well.
In the coming sections we will make an effort to solve this by splitting up the
Hamiltonian in different parts, each of which we will try to diagonalize, and then
use the fact that taking the exponential of a diagonal matrix is just a diagonal
matrix of the exponentials.

A ..=


a1

a2

. . .

an

 ⇒ eA =


ea1

ea2

. . .

ean

 (37)

This relation is shown in appendix A.1.

3.3 Splitting the evolution operator

The next step is to construct the so called split operator that will be used to
advance a wave function in time. The expression in equation (36) is satisfying
from a theoretical point of view, but it is not really practical. The Hamiltonian
has many terms and summing to infinity will give us problems if we want to
apply that operator to a state.

Let us begin with a common expression for the Hamiltonian – split into the
kinetic energy T̂ and potential energy V̂ . As it so happens, this is the kind of
Hamiltonian employed throughout the thesis.

Ĥ = T̂ + V̂ (38)

It is now tempting to do something like this.

e−i
T̂+V̂

~ t = e−i
T̂
~ te−i

V̂
~ t (39)

Then we can treat the kinetic and potential energy separately, applying them
one at a time. However, this equation (39) does not hold! To show this, let us
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go back to the series definition in (36), and expand both the left-hand-side and
the-hand-side of (39).

e−i
T̂+V̂

~ t = 1− i T̂ + V̂

~
t− (T̂ + V̂ )2

2!~2
t2 + i

(T̂ + V̂ )3

3!~3
t3 + . . . (40)

e–iT̂~ te–iV̂~ t=
(
1−i T̂

~
t− T̂ 2

2!~2
t2+ i

T̂ 3

3!~3
t3+..

)(
1−i V̂

~
t− V̂ 2

2!~2
t2+ i

V̂ 3

3!~3
t3+..

)
(41)

In order for equation (39) to hold, the expansions in (40) and (41) must be
equal. But they are not! If T̂ and V̂ were simple numbers they would be, we
could expand both (40) and (41) further and with some effort show that any
general term with k T̂ ’s and (n−k) V̂ ’s would be the same in both expressions.
But T̂ and V̂ are operators, and they do not commute. So expression (40) would
have all manners of arrangements of the operators (like for instance V̂ 2T̂ 2V̂ T̂ 3),
whereas every term from (41) would have all the T̂ ’s to the left of the V̂ ’s.

So did we reach an impasse? We need to somehow untangle the kinetic
energy and potential energy operators if we hope to be able to apply them
sequentially in a computer.

We can get out of this fox trap situation if we turn to approximations, the
next best thing. So far we have tried to use the evolution operator to give us
the wave function at all later times. What if we limit to the case when t is
small. So let t→ ∆t. In this case the higher order terms in (40) will be small.
(Remember, equation (40) was the true series expansion of the operator.) If
expanded up to the second order

e−i
T̂+V̂

~ ∆t = (42)

1− i T̂
~

∆t− i V̂
~

∆t− T̂ 2

2!~2
∆t2 +

V̂ 2

2!~2
∆t2 +

T̂ V̂

2!~2
∆t2 +

V̂ T̂

2!~2
∆t2 +O(∆t3)

Now we need to make a slight intellectual jump. Let us investigate this product:

e−i
T̂
2~ ∆te−i

V̂
~ ∆te−i

T̂
2~ ∆t (43)

It looks a bit like what we näıvely were trying to do in (39) when you observe
that the first and last factor have both had their exponents divided by 2. We
will start with the expression in (43), then make a series expansion up to the
second order for each factor, and multiply everything together – keeping every
resulting term up to the power of 2. It turns out that what we get back is
exactly the expansion in (42), except of course a different error term. (This is
left to the curious reader to check.) Thus we can equate the expansion of (43)
with the exact expression for the propagation operator if we accept an error of
order ∆t3.

e−i
Ĥ
~ ∆t = e−i

T̂
2~ ∆te−i

V̂
~ ∆te−i

T̂
2~ ∆t +O′(∆t3) (44)

As long as ∆t is kept small we have been able to split up the time evolution
operator into kinetic and potential energy, and we only got an error term that
goes as ∆t3 – which is pretty good!

Note that we would want to apply this operator repeatedly, which means
that in the middle of the sequence we will compute

. . . · e−i T̂2~ ∆t · e−i T̂2~ ∆t · . . . (45)
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This is of course equivalent of removing the 1/2 from the exponent and instead
taking

. . . · e−i T̂~ ∆t · . . . (46)

The only concern is then in the beginning and end of the sequence, but as it
turns out that introduces an error that is completely negligible. Thus in the
interest of computational speed, we let our time propagation split operator be:

Û = e−i
T̂
~ ∆te−i

V̂
~ ∆t (47)

In section 3.4 we will straighten out what kind of object this is (we are still
dealing with exponentials of operators!).

Note that this operator is unitary, so even though it is found with approxi-
mative methods it will always conserve the norm of the wave function.

e−i
T̂
~ ∆te−i

V̂
~ ∆t

(
e−i

T̂
~ ∆te−i

V̂
~ ∆t

)†
= e−i

T̂
~ ∆te−i

V̂
~ ∆tei

V̂
~ ∆tei

T̂
~ ∆t = (48)

e−i
T̂
~ ∆tei

T̂
~ ∆t = 1 ⇒ (49)

Û† = Û−1 (50)

It is interesting to compare our resulting time evolution operator in equation
(47) with our first näıve attempt to decompose the operator in (39)7. They are
quite similar!

e−i
(T̂+V̂ )

~ ∆t = e−i
T̂
~ ∆te−i

V̂
~ ∆t +O(∆t3) (51)

—

Immanuel Kant pointed out that there are some things
that you can neither learn nor figure out. Knowledge

that is hard-wired in our brain from birth. The concepts
of space and time for instance. So for a human mind
the experience of the world will always be through that

lens, regardless of the actual nature of the world.

In this light I find it a bit unsettling that space and
time provides the fundament for so many of our

mathematical descriptions of the world. Quantum
Mechanics makes it worse by incorporating some

concepts that seem to disregard – or perhaps transcend –
the ideas of space and time, like the instantaneous

collapse of a spatially extended wave function.

—

7The negligible error from grouping operators is disregarded in equation (51).
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3.4 Using the evolution operator on a two state system

In section 3.3 we found the expression for the split operator that we want to
use.

Û = e−i
T̂
~ ∆te−i

V̂
~ ∆t (52)

We now insert expressions for the kinetic energy operator T̂ and the potential
energy energy operator V̂ of the two state system. From section 2.2 we had that

T̂ =

[
p̂2/2m 0

0 p̂2/2m

]
(53)

V̂ =

[
V11(x̂) Vc(x̂)
Vc(x̂) V22(x̂)

]
(54)

Both exponentials in (52) need some discussion. Let us begin with the kinetic
energy.

3.4.1 Time evolution due to kinetic energy

As shown in appendix A.1, taking an exponential of a diagonal matrix is the
same as that diagonal matrix of exponentials. So the kinetic energy in (52) will
be easy to express as a matrix, inserting the diagonal matrix of T̂ from (53).

e−i
T̂
~ ∆t =

[
e−i

p̂2

2~m∆t 0

0 e−i
p̂2

2~m∆t

]
(55)

Done! Only one remark. We have to decide what to do with the fact that there
still is an operator p̂ in an exponential. We could try to use the most common
representation of p̂

p̂ = −i~ ∂

∂x
(56)

However, we would get rather stuck. The operator in (56) applies when the
wave function ψ is given in its x-representation. If we express ψ as a function
of the wave number k instead (p = ~k), the p̂ operator will simplify to just
multiplication by p. The problem is then resolved by a Fourier transform of the
wave function, to find its k-representation, and then simply multiply by p.

e−i
T̂
~ ∆t |ψ(k, t)〉 = . . . =

[
e−i

p2

2~m∆t ψ1(k, t)

e−i
p2

2~m∆t ψ2(k, t)

]
(57)

3.4.2 Time evolution due to potential energy

The potential energy takes some more work so let us get to it. We want to
express the following operator in a useful manner.

e−i
V̂
~ ∆t (58)

The main concern here is that the matrix for V̂ is not diagonal.

V̂ =

[
V11(x̂) Vc(x̂)
Vc(x̂) V22(x̂)

]
(59)
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Therefore we cannot directly use the same method as in the previous section
3.4.1. We could find a set of eigenvectors for the matrix V̂ – a different set
for every x-value – and then express our vector of wave functions in that basis.
Then the matrix Û would be diagonal.

V̂ = Q̂ÛQ̂−1 (60)

However, here we will concern ourself with a different approach, finding an
analytical solution to expressing (58) as a matrix.8

When dealing with a 2×2 matrix it is possible to find an analytical solution
by employing some clever strategies9. Since (58) is a complex valued 2×2 matrix
it is a good starting point to pick some basis to express such matrices in. One
such basis is the Pauli matrices joined with the unity matrix. Using complex
coefficients these will span the whole space of 2×2 complex valued matrices.

1 =

[
1 0
0 1

]
σ1 =

[
0 1
1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0
0 −1

]
(61)

Let us go for a mathematical excursion, and start by rewriting (59) in the basis
of (61). [

V11 Vc
Vc V22

]
= . . . =

V11 + V22

2
1 + Vcσ1 +

V11 − V22

2
σ3 (62)

We want to put the whole expression (62) in an exponential, and preferably deal
with each term separately, but we need to be careful. The Pauli matrices do
not commute and thus we cannot deal with each of the last two terms on their
own10. Luckily anything commutes with the identity operator 1, so we can at
least split up the expression once.

e−i
V̂
~ ∆t = e−

i∆t
~

V11+V22
2 1e−

i∆t
~ (Vcσ1+

V11−V22
2 σ3) (63)

Dealing with the first factor in (63) is trivial since the identity matrix is diagonal.

e−
i∆t
~

V11+V22
2 1 = e−i

V11+V22
2~ ∆t1 (64)

Done! And now the second factor of (63). This requires a bit more. We will be
introducing the matrix vector ~σ, and define a scalar vector ~α.

~σ ..=

σ1

σ2

σ3

 ~α ..=
1

~

 Vc
0

V11−V22

2

 (65)

It might seem that ~α is a bit arbitrary, but it is carefully chosen in order to
rewrite the second factor in (63).

e−
i∆t
~ (Vcσ1+

V11−V22
2 σ3) = e−i∆t~α~σ (66)

8Both the diagonalizing approach and the analytical solution have been tested in code
and shown to give the same result, within an error of the order of magnitude of the numerical
floating point precision.

9It is possible to do the same for a 3×3 matrix but it gets increasingly involved.
10Why not? See reasoning in the beginning of section 3.3.
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In order to tell what kind of object the resulting exponential in equation (66)
is, we express it as the series expansion.

e−i∆t~α~σ = 1− i∆t~α~σ − (∆t~α~σ)
2

2!
− i (∆t~α~σ)

3

3!
+

(∆t~α~σ)
4

4!
+ . . . (67)

In section A.2 of the appendix it is shown how these terms can be simplfied.

(~α~σ)
2

= α21 , α ..= |~α| (68)

Using the definition of ~α from equation (65), we can determine its magnitude.

α =
1

~

√
V 2
c +

(V11 − V22)
2

4
(69)

With (68) and (69), we can simplify the series in (67).

e−i∆t~α~σ = 1− i∆t~α~σ −∆t2
α2

2!
1− i∆t3α

2~α~σ

3!
+ ∆t4

α4

4!
1 + . . . (70)

By multiplying each term including ~α~σ with α/α, and then compare this expan-
sion with the familiar series expansions of sin(x) and cos(x), we can conclude
the following.

e−i∆t~α~σ = cos(α∆t)1− i sin(α∆t)

α
~α~σ (71)

Using our definitions for ~σ and ~α we can finally write down a matrix represen-
tation.

e−
i∆t
~ (Vcσ1+

V11−V22
2 σ3) = . . . =cos(α∆t)− iV11−V22

2α sin(α∆t) −iVcα sin(α∆t)

−iVcα sin(α∆t) cos(α∆t) + iV11−V22

2α sin(α∆t)

 (72)

Then it is time to put it all together using the results in equation (64) and (72),
and we have found our time evolution operator for the potential.

e−i
V̂
~ ∆t =

e−i
V11+V22

2~ ∆t

cos(α∆t)−iV11−V22

2α sin(α∆t) −iVcα sin(α∆t)

−iVcα sin(α∆t) cos(α∆t)+iV11−V22

2α sin(α∆t)

 (73)

This looks a bit hefty, but the good news is that everything in this expression
is possible to recreate in code. Remember that every amplitude V in (73) is
actually a function of the x̂-operator. So in order to apply this to a wave function
ψ, it should be in its x-representation. This is different from what we concluded
in section 3.4.1, where we needed the k-representation. The Fourier transform
comes to the rescue!
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4 Constructing the model in code

4.1 Normalization of the wave function

Quantum mechanics require the wave function to stay normalized as the system
develops in time. So if ψ is some wave function of, for instance, position and
time the following must hold.

〈ψ|ψ〉 =

∫
|ψ(x, t)|2dx = 1 ∀ t (74)

Unfortunately in numerical models there is no such luxury as integrating over
all space. In this model space is defined over a limited region, and the model
uses cyclic space – which means that if any part of the wave function exits to
the right of the interval it will re-enter on the left. Such state of affairs is not
really acceptable! The wave function – as a function of x – is describing the
expected distance between two particles, and the interval begins at x = 0 and
ends at some x = xmax. Physically there is of course nothing connecting an
arbitrary maximum distance xmax to having no distance between the particles.
The solution to the problem is to make sure that the wave function never gets
close to the boundaries of the interval, and this is done with different techniques
for each endpoint.

At x = 0 both potentials used in the model grows really large. In fact they
become large enough to keep the wave function so small at the boundary that
there is effectively no leakage this way. See illustration of the system in figure 7
on page 6!

The situation is worse at the endpoint x = xmax. The model describes
a molecule that can dissociate, so even though the Morse potential increases,
the dissociative potential decreases and will attract wave function towards x =
xmax. The solution here is to employ a complex potential. It is possible to
show – but not shown here – that the norm of a wave function, propagating
in an imaginary potential, will not be constant. If we choose the right sign of
the imaginary component the norm will decrease, and the potential will start to
”absorb” the wave function. Therefore we create some increasing imaginary po-
tential at large x values – preferably using something like an arctangent function
– and any part of the wave function entering into this region will vanish.

Unfortunately this means that our requirement for the wave function to stay
normalized is no longer fulfilled. Luckily, in this model there is an elegant inter-
pretation for this. The norm of the remaining wave function can be interpreted
as the probability for the molecule to remain stable.

4.2 Using MatLab

MatLab was chosen as the platform for building the numerical model. Even
though there are other more low level languages that have the potential for
greater speed then MatLab, it was an ideal choice for this project simply be-
cause MatLab is very quick and straightforward to use when creating computer
programs. Plotting and displaying data require very little effort, and the pro-
gramming language supports creating good design patterns with object oriented
programming.
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4.3 General structure of the code

A design pattern that uses object oriented programming was employed to attain
a good structure in the code. Figure 10 shows a simple illustration of the most
important objects that are used for creating the model.

Figure 10: Schematic overview of the central objects
in the code.

The main object in the model, named molecule – an instance of the class
DiatomicMoleculeVibration – is created with some initial parameters that
determines the properties of the system. This object then contains the functions
suitable for running optimisation algorithms (section 4.4), calculating various
quantities, and propagating the system in time using the split operator method
(section 3.3). The object molecule creates two instances – named psi1 and
psi2 – of Wavefunction (compare to equation (1) on page 3). Wavefunction

is essentially a class that defines an improved and extended array for the wave
function values. Whenever possible, wave function manipulations are built as
methods on Wavefunction, but some manipulations on the data – in particular
pertaining to the time evolution – has to be executed from molecule. For
that reason Wavefunction allows for manipulation of the wave function data
directly, going against a general idea of encapsulation. However manipulations
that are possible to encapsulate – for instance the Fourier transform which has
to be executed whenever time evolution is carried out, in either momentum or
position space – are of course properly encapsulated. To gain the ability to do a
Fourier transform, psi1 and psi2 both acquire a pointer to the singleton object
fourierT, an object that at its core employs the fast fourier transform method
that is native to MatLab, to transform wave functions between the position
representation and the momentum representation.

The main object molecule also includes an object p, that is an instance of
Potential. This object contains the matrix of arrays to store - and if necessary
manipulate - the potentials introduced in equation (3) on page 5.
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4.4 Optimization – Creating a custom algorithm

To find the desired meta-stable behaviour, a numerical optimization over several
parameters will be conducted (further details in section 5.1 and 5.2.1). There are
a couple of different optimization tools built into MatLab, and the following have
been investigated to find a good candidate for this particular optimisation task:
patternsearch, genetic algorithms, particle swarm, multistart using fmincon()

and simulated annealing (all descried on-line, in the MatLab documentation).
The best algorithm turned out to be simulated annealing. However, none

of the investigated algorithms were very well suited for the task. All of them
seemed to operate on a principle of quickly finding one local minima without
really exploring the space11 of parameters. Simulated annealing did some ex-
ploration, however it was often focused in areas of the space that clearly were
not going to give any interesting result – like calculating a lot of points in some
corner of the space where the value of the function clearly would not assume
any extremum – and sometimes the algorithm could ignore investigating areas
where promising function values had previously been found.

It is worth noting, even though the best local extremum (that could be
found) is very important, it might not be the most interesting point, since there
are other considerations for this particular optimization task. For instance, the
best extremum might correspond to a system that is not very satisfactory as a
real physical system. If the space contains multiple local extrema it would be
useful to evaluate them manually, after the optimization has finished, and thus
the algorithm should preferably produce several local extremum points instead
of just one.

The conclusion of these considerations was that it would be beneficial to
create a custom optimization algorithm suited to the premises of the problem.
This was done, and the result was an algorithm built around an iterative process
and a set of heuristical scoring principles.

Iterative process in custom algorithm

1. Begin by randomly select a large number of potential points in a con-
strained space of parameters.

2. Evaluate each point from a set of heuristical rules that assigns a numerical
score to each point.

3. Select a few of the highest scoring points and discard the rest.

4. Calculate the function value at the few selected points.

5. Based on points calculated so far, evaluate small subspaces of the entire
space to see if any region qualifies as a good place to search for a minima.

6. If any region qualifies a potential local minima run fmincon() in this small
subspace to find and store a single point as a local minimum.

7. Iterate back to 1.

11Exploring the space refers to a behaviour of avoiding to leave large areas of the space
empty of function evaluations.
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One challenge worth discussing is the rules for assigning a score to each potential
point. This is where the heuristical evaluations enter. In general, the algorithm
rewards any potential point that is either far from previously calculated points,
or close to any previous point that has some extreme value. This prevents clus-
ters of points where no extreme function value has been found, and encourages
both exploration of the space and clustering where extreme values previously
have been found.

Is is worth noting that this algorithm became significantly slower than the
inherent algorithms of MatLab. However, this is not a problem for this partic-
ular optimization task. Since calculating the value of a single point, in general,
takes about a second (the algorithm required some fraction of a second), the
speed of the algorithm was less important than having an algorithm that selects
points with due care. Avoiding to calculate any redundant or poorly selected
points is the main concern for this task.

Figure 12 on page 26 illustrates an optimisation in a 2-dimensional space of
parameters, with the third dimension as the function value. Note that points
cluster where the value of the function assumes an extremum (the bright blue
dots) and otherwise they are rather evenly spread out over the space.

—

”If you know an answer to something – as a scientist –
it’s a really nice thing to find it, particularly when

you’re starting something new.”

– Joy Hirsch

—
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5 Results and discussions

5.1 Replicating results from earlier paper

An important goal of this thesis was to reproduce an earlier result from the
paper Molecular quantum wavepacket revivals in coupled electronic states by
D. Wang, Å. Larson, H. O. Karlsson and T. Hansson [2].

In this paper investigations are carried out in two different kinds of coupled
systems. The first is a system with two attractive potentials (corresponding to
a stable system), and the second is a system where one potential is repulsive
(corresponding to an unstable system). It is the latter – illustrated in figure 11
– that has been replicated here. Particular parameters are presented as asso-
ciated with a metastable state. The goal of the replication is to run the same
optimization and find this state.

Figure 11: Illustration of the potentials V11 (attractive Morse
potential) and V22 (repulsive potential) used in the original

paper.

The system is described by the Schrödinger equation for a two state system,
discussed in section 2 (specifically section 2.3).

i~
∂

∂t

[
ψ1

ψ2

]
=

[
p̂2/2m+ V11(x̂) Vc(x̂)

Vc(x̂) p̂2/2m+ V22(x̂)

] [
ψ1

ψ2

]
(75)

A number of parameters are used to specify the system properties, potentials
and initial condition. Note that they are all expressed in atomic units [10].

Potentials are specified by the following equations and parameters:

V11 = D11

(
1− e−β11(x−x11)

)2

+ E11 (76)

V22 = D22 e
− x−x22

β22 + E22 (77)

V21 = V12 = D21 e
−β21( x−x21)2

(78)

Table 1: Values used in potentials (atomic units)

n En Dn βn xn

11 0 0.03185 0.63235 4.07549

22 (optimized) 8.07567 0.060226 -0.18568

21 (optimized) 0.484000 (calculated)
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The mass used in the replication is identical to that in the paper, i.e the reduced
molecular mass of the Rb2 (expressed in atomic units).

m = µ = 42.7339 · 1822.88842 (79)

A relatively narrow Gaussian wave packet is placed in the stable potential
to the right of the coupling area – i.e. to the right of xc in figure 11. The initial
wave function is specified by the following functions and parameters.[

ψ1

ψ2

]
=

[
(2πσ2)

1
4 e−

(x−x0)2

4σ2

0

]
(80)

Table 2: Values used in initial wave function (atomic units)

σ x0

0.0772 6.000

The spatial grid uses 4096 points, as does the momentum grid. The time
step (discussed in section 3.3) used for time evolution of the wave function is not
explicitly defined in the paper [2], but investigating a piece of code underlying
the results in the paper, a value could be recovered: ∆t ' 41. To be on the
safe side a smaller time step (a fifth of the time step in the paper) ∆t ' 8.2 was
used. (Times are expressed in atomic units.)

To optimize the system for meta-stable behaviour a function for optimization
is created. It takes any desired system parameters as inputs, and outputs a
value that is close to 0 if the system is close to having the desired properties,
and increases to 2 if the system is far from desired properties.

fop({system parameters}) = [0, 2] (81)

Calculating the value of this function incorporates two system properties that
each has a desired value. The first part is to optimize for a wave function
splitting ratio: η ' 0.5 – meaning that during the first classical period12, as the
wave function has gone through the region of the coupling, the stable and the
dissociative state will be about equally populated. Figure 8 on page 6 illustrates
this situation. To evaluate this behaviour, under the appropriate time interval
the maximum value of the norm of ψ2 (the second electronic state, see equation
(1) on page 3) is calculated. However, it is not a requirement that η is exactly
0.5. We want to allow for some deviations that should only effect fop to a small
degree. Using the following formula for calculating the first part – fop1 – will
insure a slow increase of fop1 as η deviates from 0.5.

fop1 = |2 (η − 0.5) |4 (82)

The second part fop2 is the most central feature – the meta-stable behaviour.
After one classical period T1, as the bulk of the wave function returns to the
initial position, and the autocorrelation R(T1) should then be as close to 1 as

12A classical period is defined as the time it takes from t = 0 to the time when the
autocorrelation function reaches its first maximum.
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possible. This is because when the autocorrelation is close to 1, most of the wave
function is populating the stable Morse potential, so the process is simultane-
ously optimising for autocorrelation and meta-stable behaviour. Figure 7 on
page 6 illustrates the initial condition that we want to get as close to as possible
after one classical period T1. Since fop is required (by MatLab) to approach its
minimum value for the desired behaviour, the following function for fop2 will
suit our purposes.

fop2 = 1−R(T1) = 1−
∣∣∣∣∫ ψ∗1(x, T1)ψ∗1(x, 0)dx

∣∣∣∣ (83)

The total function for optimization is formed by taking the sum of the parts.

fop = fop1 + fop2 (84)

Running the custom optimization algorithm (section 4.4) on fop, varying the
two parameters En and Dn, and plotting the points in a 3D space, gave the plot
in figure 12.

Figure 12: Optimization around the point where an extremum
is declared to be. Bright blue points have a lower (more desired)

value and purple and red have higher (less desired) value.

In the paper the position of the minima is found at:

E′22 = −0.00228 (85)

D′21 = 0.000907 (86)

This investigation has found the minimizing parameters to be:

E22 = −0.002279 (87)

D21 = 0.0008812 (88)

On the scale of the plot in figure 12 the two points are possible to separate, but
they both clearly lie within the area of the local minimum – where the derivative
is very small – and thus the auto correlation R(T1) does not vary much between
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the points. When comparing the autocorrelation of the two points using this
model the result is:

R′(T1) = 0.966 (89)

R(T1) = 0.976 (90)

Note that though the values E′22 and D′21 were stated in the paper, there was
no explicit reference to the value of the auto correlation, thus both R and R′

are calculated using the same model.

5.1.1 Discussion about the replication results

Comparing the values in equations (85) – (88), there is a small but noticeable
discrepancy. However, there are several reasons that enables this discrepancy
without interpreting it as an indication of problems with the model. On the con-
trary, when optimizing over various spaces it is evident that extremum points
are not very abundant in the space of parameters, thus finding a local extremum
on top of where it should be is a strong indication that the numerical model is
accurate.

Possible reasons for the small discrepancy include:

1. The most obvious problem is that it is not clear how the optimization
for the wave function splitting ratio η ' 0.5 is carried out in the original
paper. There might have been a smaller or bigger tolerance for deviations
around 0.5 that moves the position of the extremum for fop.

2. The number of significant figures that are presented in the paper is limited.
It is possible that the sum of rounding errors of the parameters in table 1
and 2 create a slightly different model than was originally used.

3. The method used to calculate the position of the coupling – x21 in equation
(78) – are slightly different in the two models, and other investigations have
indicated a small numerical discrepancy in x21.

In general though, the results are very promising and a clear indication that the
model works the way it should.

5.2 Interaction-free measurement with electromagnetic
field

The central purpose of the work in this thesis is to investigate the effects of
attempting an interaction-free measurement on the vibrational state of a meta-
stable diatomic molecule. In practical terms this means trying to measure where
the particle is after the wave function has split up in a superposition of following
two different paths in the potentials. This situation is illustrated in figure 8 on
page 6, and discussed in detail in that section.

The means by which we wish to measure the path is to gently entangle the
state of the molecule with the state of an electromagnetic field, in order to make
the measurement on the field, instead of the molecule.

The claim is that there is no such thing as a free lunch. If we try to entangle
the state of the molecule with the field, the latter will contain some information
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about the state of the molecule, but this will also disrupt the meta-stable state,
and the molecule will break apart. The more entanglement (i.e. information)
we wish to have the more we will disturb the molecule, and it will dissociate
quicker.

The model for the dispersive interaction with the electromagnetic field is
described and derived in section 2.5.

i~
∂

∂t

[
ψ1

ψ2

]
=

[
p̂2/2m+ V11(x̂) Vc(x̂)

Vc(x̂) p̂2/2m+ V22(x̂)− ~ g
2n
δ

] [
ψ1

ψ2

]
(91)

The unique part is the term added to the second potential, ~g2n/δ. This is the
disturbance that the electromagnetic field is creating in the system. (Through-
out this thesis atomic units are used, which means ~ = 1.) The factor g2/δ is
the strength of the interaction between the field and the atom, and the factor n
is the number of photons in the field. Note that n will have some distribution
around 〈n〉, and not a single value (discussed in section 2.5). In separate calcu-
lations, both g2/δ and 〈n〉 have been varied while keeping the other constant to
observe the relationship between entanglement and dissociation. The two cases
are discussed in detail below.

The method for measuring the entanglement between the molecule and the
field – using density operators and the von Neuman entropy – is described in
section 2.6.

5.2.1 Investigation I – Finding parameters for a meta-stable state

The meta-stable state described in previous paper, and replicated in section 5.1,
is not very useful for this entanglement investigation. Those parameters describe
a coupling Vc between the electronic states that is too wide, which means the
wave packet will never really travel outside of the region of the coupling. Having
a superposition of states and the wave packets outside the region (illustrated in
figure 8 on page 6) was crucial, and thus a new set of parameters – describing
a meta-stable molecule with more desirable features – had to be found.

Using the custom optimization algorithm, described in section 4.4, and the
same optimization function fop as described in section 5.1, to optimize over
four parameters – E22, D21, β21 and x0 – revealed a suitable local extremum
for the parameters in table 3, and the initial system that is described by these
parameters is visualized in figure 13.

Table 3: Parameters specifying potentials and initial wave
function (atomic units)

n En Dn βn xn σ x0

11 0 0.03185 0.63235 4.07549 0.0772 5.529

22 0.004641 8.07567 0.060226 -0.18568

21 0.0006837 8.613 (calculated)
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Figure 13: Plot of the potentials used to model the meta-stable
behaviour. Solid curves are diabatic potentials. Dashed curves
are adiabatic potentials signifying the region of the coupling.
The dotted curve is an illustration of the initial wave function

as a probability density.

5.2.2 Investigation II – Large scale behaviour of energy corrections

The objective of this first investigation is to get a broad sense of the behaviour
as the term g2n/δ varies. A wide range of systems are modelled with different
values for the energy corrections, and the autocorrelation after one classical
period (t = T1) is recorded. A high autocorrelation after one classical period
means better molecular stability.

The result of this investigation is shown in figure 14, and from this it is
obvious that the maxima in autocorrelation that was optimized for is not the
only maxima we are dealing with.

Figure 14: Autocorrelation of |Ψ〉 after one classical period
(i.e. t = T1) as the strength of the energy correction varies.

29



These restorations of stability as the influence of the electromagnetic field
changes can – with some hand-waving – be explained in terms of the phase
of the wave function (though only the component travelling in the state with
the energy correction) turning a multiple of 2π, ending up where it began, and
recreating the original interference.

At the ends of the spectrum the autocorrelation goes sharply to a value
close to 1, a behaviour that has a simple explanation: The electromagnetic
field is shifting the energy of the second electronic state (illustrated by V22 in
figure 13), and at some point we have shifted the potential so much that there
is no longer an intersection between the curves, and the coupling between the
electronic states vanishes. The wave packet is then suddenly travelling in a
single potential and the autocorrelation increases sharply.

5.2.3 Investigation III – Varying 〈n〉

As discussed at the end of section 2.5, the model will not use an electromagnetic
field with a specific number of photons. Instead, we have a probability density
that follows a Poisson distribution around some 〈n〉.

The purpose of this investigation is to show that increased entanglement
causes the autocorrelation to decline, and the molecule to dissociate quicker.
We can imagine that in the neighbourhood of any of the peaks in figure 14, the
behaviour of the system will resemble the behaviour without disturbance. Thus
to efficiently find a behaviour where we can expect entanglement will increase
over time, the value of g2/δ is chosen to be low enough that when varying the
values of 〈n〉 (within a reasonable range), we will only operate in an interval
over the slope next to the peak corresponding to zero correction. Choosing
g2/δ quite small is also a physically reasonable choice, since it is not likely that
an electromagnetic field with a large detuning would have a great impact on
the dynamics of the molecule, and in an experimental situation, we can also
imagine that, there will be some degree of control over the magnitude of g2/δ
by varying the detuning δ to either positive or negative values. So a suitable
value is chosen.

g2/δ = −5.000 · 10−06 (92)

Separate calculations are made for 7 different distributions around mean values
〈n〉k. These distributions over |n〉 are plotted in figure 15 together with the
autocorrelation of |Ψ〉 after the time of one classical period.

〈n〉 = {5, 10, 15, 20, 25, 30, 35} (93)
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Figure 15: The solid line shows the autocorrelation of |Ψ〉 after
one classical period (i.e. t = T1). Dashed curves illustrates the

seven distributions over n for which entanglement and
autocorrelation later are calculated.

For each distribution of the field over n, entanglement SvN , and the au-
tocorrelation R, are both calculated as a function of time. Thus, for every
distribution displayed in figure 15 we get two curves. What we expect to see
is that the sharper the entanglement increases the quicker the autocorrelation
decreases. And that is indeed the observed result, shown in figure 16.

Figure 16: The solid lines are the von Neumann entropies
(i.e. entanglement) as functions of time, with their scale to the
left. The dotted peaks are the autocorrelations as functions of

time, and their scale is to the right. Each dotted line has a
corresponding solid line. This correspondence is illustrated with

the two dashed curves.
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Each solid curve (entanglement) corresponds to a dotted curve (autocorrela-
tion), and the solid curve that has the smallest slope corresponds to the highest
autocorrelation (both are from the calculation where 〈n〉=5) and so on all the
way up to the steepest entanglement slope (the calculation where 〈n〉=35) that
corresponds to the lowest curve for autocorrelation. The third line (for 〈n〉=15)
is printed dashed for both entanglement and autocorrelation to emphasize the
correspondence between the curves.

Note however, something is starting to happen with the sharpest rising en-
tanglement curve after the third classical period. Its slope declines a bit and
it is approaching the curve below it. Plotting the entanglement curves over a
larger time interval – about 15 classical periods – reveals a secondary pattern,
as seen in figure 17.

Figure 17: Von Neumann entropies (i.e. entanglement) as a
function of time, spanning about 15 classical periods.

5.2.4 Discussion about the halting increase of entanglement

The declining of the steepest curves in figure 17 can be understood when you
consider the properties of the system, at least if we accept a few waving hands
in our arguments. A sharper increase in entanglement is connected to a larger
portion of the wave function ”leaking out” to the right of the curve crossing
of the second electronic state (illustrated by V22 in figure 13 on page 29), and
in this region the wave function will behave much like a freely moving particle
(the molecule has dissociated). The fact that this state has small corrections
for different values of n will not differentiate the overall behaviour very much.
Thus, as the wave function starts travelling more like a free particle, there is no
process by which it is possible to keep increasing entanglement, and the amount
of entanglement stays almost constant. Or in other words, as soon as probability
leaves the region for the coupling, the field can no longer measure ”which path”
the molecule is traversing (V11 or V22), and thereby not attain the information
that causes the increase in entanglement.
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5.2.5 Investigation IV – Varying g2/δ

In the previous investigation 〈n〉 was varied, which corresponds to a system that
is a good model for a real physical system – changing 〈n〉 is just analogous to
changing the intensity of the electromagnetic field. However as 〈n〉 increases, so
does the size of the truncated density matrix that have been used to calculate
the amount of entanglement, and we get a greater number of eigenvalues to add
up for the von Neumann entropy. In order to confirm that this difference would
not play any role, we compare the result in section 5.2.3 with a calculation that
instead vary the strength of the coupling between the electromagnetic field and
the atom, i.e. g2/δ, while keeping the intensity of the field constant. In other
words we use the same number for 〈n〉 – in this case 〈n〉= 25 – and we vary
g2/δ instead. Compare this method illustrated in figure 18 with the previous
method illustrated in figure 15.

g2

δ
= −{1.000, 2.000, 3.000, 4.000, 5.000, 6.000, 7.000} · 10−6 (94)

Figure 18: The solid lines shows the different autocorrelation
after one classical period as functions of n. Each line has a

different value of g2/δ. The dashed curve illustrates the
constant photon distribution that is used in all seven

calculations.

Similar to investigation III – for each value of g2/δ, entanglement SvN and
the autocorrelation R, are calculated as a function of time. Thus in this investi-
gation, for every solid curve displayed in figure 18, we will get two corresponding
curves for entanglement and autocorrelation. We still expect to see that the
sharper the entanglement increases the quicker the autocorrelation decreases.
And the observed result is indeed consistent with expectations!

In figure 19, each solid curve (entanglement) corresponds to a dotted curve
(autocorrelation), and the solid curve that has the smallest slope corresponds
to the highest autocorrelation, and so on to the steepest entanglement slope
that corresponds to the lowest curve for autocorrelation (just like in investiga-
tion III). The third curve is again printed dashed for both entanglement and
autocorrelation to emphasize the correspondence between the curves.
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Figure 19: The solid lines are the von Neumann entropies
(i.e. entanglement) as a function of time, with its scale to the
left. The dotted peaks are the autocorrelation calculated as

function of time, its scale is to the right. Each dotted line has a
corresponding solid line. This correspondence is illustrated with

the dashed line.

Again, plotting the entanglement curves over a larger time interval – also
about 15 classical periods – in figure 20, reveals a very similar pattern as the
previous investigation.

Figure 20: Von Neumann entropies (i.e. entanglement) as a
function of time, spanning about 15 classical periods.
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There are small differences in the shape of the curves (on larger time scales),
comparing figure 17 to figure 20. For instance, the sharpest rising entanglement
in this investigation reaches a higher plateau than the one from the previous
investigation. However such deviations are not surprising since the two cases
are in fact calculated by different procedures.

5.2.6 Discussion about the results

This numerical model indeed supports that increasing entanglement correlates
with increasing risk for dissociating the meta-stable molecule. However, in these
calculations we observe one behaviour that is more unexpected. The entangle-
ment stopped growing after a few periods (shown in figure 17 and 20), and this
phenomenon happens sooner for a more rapidly dissociating molecule. However,
the behaviour can be understood as a effect of the system, and is discussed in
section 5.2.4.
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6 Conclusions

This thesis set out to study the particular phenomenon of meta-stability that
can occur in diatomic molecules. In order to fulfil this objective, various subject
matters have been studied and utilized. Quantum mechanics theory and mod-
elling (section 2), a few quantum field theory concepts (section 2.5 and appendix
A.4), numerical methods applied to the time evolution operator (section 3), gen-
eral programming principles as well as specific MatLab characteristics and some
heuristical problem solving (section 4), and last some foundational mathemati-
cal concepts (appendix A.1, A.2 and A.3).

As a first test for the program, that was built on these principles, the results
from an earlier paper were successfully replicated (section 5.1). There was a
small discrepancy between the paper and the results, but this discrepancy is
not surprising considering the level of detail the original paper provided. A
discussion of this discrepancy, and a bullet list of reasons, can be found in
section 5.1.1.

When the first test proved successful, the work steered towards investigat-
ing a hypothesis about using interaction-free measurement on the meta-stable
molecule (described in section 2.5 and 2.6, and results presented in section 5.2).
The goal was to show that while interaction-free measurement can obtain some
information about the electronic state of the molecule, the more information
we want, the more we will disturb the molecule and destroy the meta-stable
characteristic. The conclusion is that the results from the numerical model in-
deed supports the hypothesis. Though it is worth noting that in the process
we encountered a somewhat unexpected phenomena where the entanglement
stops increasing, and levels off, after a certain time (shown in figure 17 and 20).
However, this effect can be understood as a consequence of the system, and it
is discussed in section 5.2.4.

Future prospects, for the line of work in this thesis, would be to evaluate how
realistic the various choices of parameters are for any real physical system in
an experimental situation that is feasible to recreate. The interesting question
would be, how frequently can the processes described in this thesis be expected
to occur in nature?
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A Appendix

A.1 Rewriting the exponential of a diagonal matrix

Using the series definition of the exponential function, we can find a suitable
definition to what the exponential of a matrix should look like, and derive a
useful relation if the matrix is diagonal. If x is a number, the exponential
function has the following definition:

ex ..= 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ . . . =

∞∑
k=0

xk

k!
(95)

Thus we use the same pattern to define the exponential of a matrix A.

eA ..= 1 +A+
A2

2!
+
A3

3!
+
A4

4!
+ . . . =

∞∑
k=0

Ak

k!
(96)

From this we can see that eA is itself a matrix. Further, in order for this
definition to make sense A is required to be a square matrix (let it be n×n),
and eA is then of the same dimensions as A. However, we have to sort out if
we have convergence for each element in the matrix eA. That discussion is here
left to the curious reader to continue, but it is indeed possible to show that we
have convergence.

So, what about when A is diagonal?

A ..=


a1

a2

. . .

an

 (97)

Following the ordinary rules for matrix multiplication we can clearly see that a
product between to diagonal matrices is just taking the product of each element
on the diagonal.

AA =


a1

a2

. . .

an



a1

a2

. . .

an

 =


a2

1

a2
2

. . .

a2
n

 (98)

And from this it is clear how the pattern continues.

Ak =


ak1

ak2
. . .

akn

 (99)
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We are now ready to finish this line of reasoning. Taking the definition in
(96) and using the results from (99), we see that the infinite series of matrix
multiplications becomes infinite series of ordinary number multiplication on the
diagonal.

eA ..=

∞∑
k=0

Ak

k!
=


∑ ak1

k! ∑ ak2
k!

. . . ∑ akn
k!

 (100)

And by the definition of the exponential function of an ordinary number in (95),
we can replace the series in the matrix and conclude.

eA =


ea1

ea2

. . .

ean

 (101)

Q.E.D.

A.2 Simplify expression with repeated Pauli matrices

We want to show that the relation used in section 3.4.2 holds.

(~α~σ)
2

= |α|21 (102)

We begin by expressing every vector in terms of its components.

(~α~σ)
2

= (α1σ1 + α2σ2 + α3σ3) (α1σ1 + α2σ2 + α3σ3) = (103)

α2
1σ

2
1 + α2

2σ
2
2 + α2

3σ
2
3 +

α1α2 (σ1σ2 + σ2σ1) + α1α3 (σ1σ3 + σ3σ1) + α2α3 (σ2σ3 + σ3σ2)
(104)

It is here left to the curious reader to show that the parenthesis with sigmas are
all equal to 0, i.e. the Pauli matrices anti-commute.

σmσn + σnσm = 0 , ∀ m 6= n (105)

With simple exhaustion of all cases it is also straight forward to show that the
squares of the Pauli matrices, in equation (104), simplifies to the unity operator.

σ2
n = 1 ; n = {1, 2, 3} (106)

Inserting the results from (105) and (106) in equation (104), we are able to
conclude.

(~α~σ)
2

= α2
11 + α2

21 + α2
31 = |α|21 (107)

Q.E.D.
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A.3 Partial Trace

Reference for the section: Jens Eisert [7].
Consider a composite system made from two subsystems with corresponding

Hilbert spaces H1 and H2. Then the space of the complete composite system is
the tensor product.

H = H1 ⊗H2 (108)

Let a basis for the fist subsystem in H1 be |ψi〉, and for the second space in H2

we take the basis |φi〉.
Taking a sum over all combinations of states in both spaces, with corre-

sponding probability coefficients, we can create a general state of the system
and form our density operator.

|ψ〉 =
∑
m,n

cmn |ψm〉 |φn〉 (109)

ρ = |ψ〉 〈ψ| (110)

Taking the partial trace over the first system then has the following definition.

ρ2 = Tr1[ρ] =
∑
i

〈ψi| ρ |ψi〉 (111)

The resulting ρ2 is a reduced density operator that has the same dimensionality
as H2.

A.4 The Jaynes-Cummings model

Reference for the section: Göran Johansson and Thilo Bauch [5], and Marlan
O. Scully and M. Suhail Zubairy [11].

The goal here is to provide a brief derivation of the so called Jaynes-Cum-
mings Hamiltionian for the interaction between a two state atom and a quan-
tized electromagnetic field. The system – a two level atom in an optical cavity
with a single mode of electromagnetic radiation – is illustrated in figure 21. The
angular frequency of the mode is denoted ωc, and the frequency corresponding
to the energy required to excite the atom is ωa.

Figure 21: To the left, an illustration of a two level atom (the
dot) in an optical cavity (the circular walls) with one mode of

electromagnetic radiation (the waves). To the right, an
illustration of the two energy levels of the atom.

The Hamiltonian is composed of three parts, the energy of the field, the
internal electronic energy of the atom, and the interaction between the field and
the atom.

Ĥjc = Ĥfield + Ĥatom + Ĥint (112)
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The field Hamiltonian is expressed in ladder operators (â† is the creation op-
erator and â is the annihilation operator), that together count the number of
excitations (i.e the number of photons) in the field.

Ĥfield = ~ωcâ†â (113)

Next, putting the energy of the atom to 0 in the centre between the electronic
ground state |g〉, and the excited state |e〉, makes the atomic Hamiltonian par-
ticularly simple to express in terms of the Pauli matrix σz = |e〉〈e| − |g〉〈g| and
the atomic transition frequency ωa.

Ĥatom = ~
ωa
2
σ̂z (114)

The interaction Hamiltonian is described in terms of the electric field operator Ê,
the polarisation operator σ̂x (assuming the field is polarized in the x direction),
and a coupling strength parameter g.

Ĥint = ~gÊσ̂x (115)

Under the dipole approximation – i.e. the wavelength of the electromagnetic
wave is much larger than the size of the atom – the electric field operator is
proportional to â†+â (further details at page 194 in [11]) and the proportionality
constant is absorbed into the coupling strength g. The polarization operator
σ̂x can be rewritten in terms of the ladder operators for the atomic system,
σ̂x = σ̂+ + σ̂−. Inserting the expressions for Ê and σ̂x gives us

Ĥint = ~g
(
â†σ̂+ + â†σ̂− + âσ̂+ + âσ̂−

)
(116)

Two of these terms (â†σ̂− and âσ̂+) conserve the total number of excitations
in the system. It is then possible to show that the other terms, that do not
conserve the number of excitations, rotate on much shorter time scales and can
thus be ignored. This is the so called rotating wave approximation and it will
not be discussed in detail here. Using this, we can simplify the interaction part.

Ĥint = ~g
(
â†σ̂− + âσ̂+

)
(117)

Putting together the three terms from equations (113), (114), and (117), we can
form the total Hamiltonian.

Ĥjc = ~ωcâ†â+ ~
ωa
2
σ̂z + ~g

(
â†σ̂− + âσ̂+

)
(118)

Here, the Hamiltonian depends on the frequency for the field ωc and the atomic
transition frequency ωa. However, the behaviour of the system is in practice
only dependent on the differences between these two frequencies. If they start to
approach the same value, the electric field would start causing excitations in the
atomic state. Thus we introduce a parameter describing the difference between
the two – the so called detuning – δ ..= ωa−ωc, and rewrite the Hamiltonian in
terms of that.

Ĥjc = ~ωc
(
â†â+

1

2
σ̂z

)
+ ~

δ

2
σ̂z + ~g

(
â†σ̂− + âσ̂+

)
(119)

We would now wish to find a set of eigenstates for this Hamiltonian, that we
can use as a basis to express the Hamiltonian as a diagonal matrix. However,
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there are no obvious and simple eigenstates. So instead, let us pick some easy
basis, check how diagonal the matrix then becomes, and take it from there. The
simplest set of states we can envision as a basis is just the number of photons –
for which we use the symbol nc (with subscript c for ”cavity”) – and the state
of the atom – for which we use the symbol ia (a for ”atom”) . Further, we let
ia = g signify that the atom is in its ground state, and ia = e corresponds to
an excited state. From the tensor product we can then construct the states we
intend to use as a basis.{

|nc , ia〉
}

, nc = 0, 1, 2, . . . , ia = e, g (120)

Using these basis states we can create the infinite dimensional matrix represen-
tation of Ĥjc, where any one element in the matrix is found by taking:

Ĥ
(ncmciaja)
jc = 〈nc , ia| Ĥjc |mc , ja〉 (121)

Then, using Ĥjc from (119) it is quite straightforward to show that any matrix
element, gained from two basis vectors that represent different total number of
excitations (for instance |1 , e〉 correspond to 2 excitations, and |50 , g〉 corre-
spond to 50), are all zero. This means that there is no coupling between states
with different number of excitations, and for any given number of excitations n
we can find a 2×2 matrix, for the Hamiltonian, expressed in the basis vectors
{ |n , g〉 , |n−1 , e〉 }.

Ĥ
(n)
jc =

[
〈n−1 , e| Ĥjc |n−1 , e〉 〈n−1 , e| Ĥjc |n , g〉

〈n , g| Ĥjc |n−1 , e〉 〈n , g| Ĥjc |n , g〉

]
⇒ . . .⇒ (122)

Ĥ
(n)
jc = ~

[
(n− 1

2 )ωc + δ
2

√
n g

√
n g (n− 1

2 )ωc − δ
2

]
(123)

It is worth pointing out that the matrix for zero excitations is not a 2×2 matrix
at all, but instead a 1×1 matrix. (When the atom is in its ground state and
there are no field excitations the atom cannot transform into an excited state.)

Ĥ
(0)
jc = −~ωc

2
− ~

δ

2
= −~ωa

2
(124)

With these expressions we can now form the entire Jaynes-Cummings Hamilto-
nian as a matrix of block matrices.

Ĥjc =



Ĥ
(0)
jc

Ĥ
(1)
jc

Ĥ
(2)
jc

. . .


(125)

A.4.1 Jaynes-Cummings in the dispersive regime

Note that the Hamiltonian in (125) is not entirely diagonal since the matrices

Ĥ
(n)
jc in (123) are not. Expressed in the eigenstates of { |nc , ia〉 } there is a

coupling between every two states of the same number of excitations.
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However, in the so called dispersive regime, we can diagonalise the Hamilto-
nian by approximative methods without having to find new eigenvectors. The
dispersive regime means that the detuning δ is large compared to the coupling
between the field and the atom g.

δ ..= ωa − ωc (126)

|δ| �
√
ng (127)

Using perturbation theory in the parameter g/δ it is possible to find a new
diagonalised matrix for (123). The perturbation calculation is not shown here,
but the result is.

Ĥ
(n)
jc = ~

(n− 1
2 )ωc + δ

2 + g2n
δ

(n− 1
2 )ωc − δ

2 −
g2n
δ

 (128)

Noting that this Hamiltonian contains a constant term – i.e. (n−1/2)ωc – for
any given n, we can redefine the zero level of the energy for any system with n
excitations, and remove that term.

Ĥ
(n)
jc = ~

 δ2 + g2n
δ

− δ2 −
g2n
δ

 (129)

Or we can go even further. In the dispersive regime the state when the atom is
excited is never really populated, so it makes sense to define the ground state
to have zero energy, and add δ/2 to the diagonal terms.

Ĥ
(n)
jc = ~

δ + g2n
δ

− g
2n
δ

 (130)
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