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Abstract
We will derive the canonical thermal state for a quantum system with a
given Hamiltonian, using the principle of maximum entropy inference,

following ideas from by E. T. Jaynes.



1 The thermal state
Here we will follow ideas from E. T. Jaynes [1, 2], and employ the principle of
maximum entropy inference, to motivate and derive the canonical thermal state
of a quantum system, with Hamiltonian Ĥ.

ρ = e−βĤ

Tr[ e−βĤ] (1)

In this derivation we can assume a mix of the “objective” and “subjective”
attitude towards probabilities [1] in physical systems—meaning that when we
calculate a probability of some state, we deal with it as our expectation that
this state will be physically realized, and if we wanted to experimentally verify
our calculated probabilities we would need an ensemble of identical systems,
on which a frequency measurement of the state would approach our calculated
probability (in the limit of an infinite ensemble). Put differently, we consider
probabilities as calculated from our state of knowledge, but, if we wanted to, we
also expect to be able to prepare an ensemble of physical systems that would
correlate with our expected probabilities in a frequency measurement.

We then define a “thermal state”, for a system with Hamiltonian Ĥ, as
one where we only have information about its state in our knowledge about its
average energy 〈E〉.1 Note that an average energy does not imply some unique
state ρ, nevertheless, we are looking for exactly such a state.2 To single out one
particular choice of ρ, we follow [1] and include one additional condition. We
require is that the state ρ should—not only give the correct average energy 〈E〉,
but also—maximize the von Neumann entropy S(ρ) of the distribution.

S(ρ) ..= −Tr
[
ρ ln ρ

]
(2)

From an information theoretic perspective, entropy can be interpreted as the
amount of uncertainty in our state, or in other words, the amount of information
that has to be supplied in order to reduce the state to a pure state (with no
ambiguity, or zero entropy).

To motivate why we wish to maximize the entropy (a.k.a. uncertainty),
imagine the following scenario, for simplicity only with with classical probabilities,
and Shannon entropy: The only information we have about a physical state is the
average energy 〈E〉, and we have two viable candidate probability distributions
P1(Ei) and P2(Ei) over a set of energies {Ei}, such that the (classical) Shannon
entropy H(P ) is maximized for P1, and it is strictly smaller for H2.

H(P1) > H(P2) (3)

Here, the probability distribution P2 must incorporate some biased assumptions
(additional information that we do not really have) compared to distribution P1,

1Such an average energy 〈E〉, is best thought of as an ensemble average.
2There are plenty of freedom in our choice of ρ. For instance, we can consider states

corresponding to different probability distribution between the eigenvalues of the Hamiltonian Ĥ,
{P (Ei)}, and we can introduce entanglement in our state, without changing the distribution
between eigenvalues {P (Ei)}.
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since P2 is in a sense “closer” to the definite (pure) state than P1. Therefore P1 is
the only distribution for which we cannot argue that some extraneous information
was incorporated. This is the principle of maximum entropy inference [1].

Here (in the quantum case), we want to determine the state ρ, that maximizes
the von Neumann entropy, but is subject to our constraints Tr[ρ] = 1, and
Tr[Ĥρ] = 〈E〉. To this end, we will use the method of Lagrange multipliers,
λ1 6= 0, λ2 6= 0, and we construct the function f(ρ, λ1, λ2).

f(ρ, λ1, λ2) = −kTr
[
ρ ln ρ

]
+ λ1

(
1− Tr

[
ρ
])

+ λ2

(
〈E〉 − Tr

[
ρĤ
])

(4)

We begin by using the spectral theorem and rewrite our state ρ, and the energy
operator Ĥ on their diagonal form, using some diagonalizing basis {|ψi〉}, and
{|φi〉}, with their eigenvalues {pi} and {Ei}, respectively.

ρ =
∑
i

pi |φi〉〈φi| (5)

Ĥ =
∑
i

Ei |ψi〉〈ψi| (6)

Then Tr[ρ ln ρ] becomes a simple sum over eigenvalues
∑
i pi ln pi, the trace over

ρ is just the sum of the eigenvalues {pi}, and finding the expression for Tr[ρĤ]
requires very few steps.

f(ρ, λ1, λ2) = −k
∑
i

pi ln pi+λ1

(
1−
∑
i

pi

)
+λ2

(
〈E〉−

∑
i,j

piEj |〈ψi|φj〉|2
)

(7)

We then want to take the derivatives of this expression with respect every degree
of freedom in ρ, and also with respect to λ1 6= 0 and λ2 6= 0, then set all equations
equal to 0. Since the term that includes |〈ψi|φj〉|2 is the only one affected by an
infinitesimal rotation of the state-basis {|ψi〉}, if the derivative equals zero, the
matrix elements 〈ψi|φj〉 must be indifferent (in the linear, first-order sense) to
such a rotation. This is only possible if the bases {|ψi〉}, and {|φi〉} coincide (up
to an irrelevant phase for each basis vector). Thus |〈ψi|φj〉|2 = δij , and we can
conclude that ρ is a diagonal matrix in the eigenbasis of the Hamiltonian, {|φi〉}.

f(p1, · · ·, pn, λ1, λ2) =

= −k
∑
i

pi ln pi + λ1

(
1−

∑
i

pi

)
+ λ2

(
〈E〉 −

∑
i

piEi

)
(8)

The remaining degrees of freedom of f are the ones with respect to the probability
eigenvalues {pi}, and of course λ1 and λ2. We take the derivative with respect
each of them, and set all equations equal to 0.

∂f

∂pi
= −k( ln pi + 1)− λ1 − λ2Ei = 0 ⇒ (9)

ln pi = −1− λ1

k
− λ2Ei

k
⇒ (10)

pi = e−λ2Ei/k

e1+λ1/k
; ∀ i (11)
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Then the derivatives with respect to λ1 and λ2, and we gather the results in a
system of equations. 

pi = e−λ2Ei/k

e1+λ1/k
; ∀ i∑

i

pi = 1∑
i

piEi = 〈E〉

(12)

(13)

(14)

Since we know that the basis {|φi〉} diagonalizes both ρ and Ĥ we can rewrite
these equations in terms of ρ and Ĥ.

ρ = e−λ2Ĥ/k

e1+λ1/k

Tr
[
ρ
]

= 1

Tr
[
ρĤ
]

= 〈E〉

(15)

(16)

(17)

In equation (15) we have two unknowns, λ1 and λ2, that are uniquely specified by
the two conditions in equation (16) and (17). To find an expression for e1+λ1/k,
we take the trace of equation (15) and set it equal to 1.

1 = 1
e1+λ1/k

Tr
[
e−λ2Ĥ/k

]
⇒ 1

e1+λ1/k
= 1

Tr[ e−λ2Ĥ/k] =.. 1
Z

(18)

As shown, the denominator in equation (15), e1+λ1/k ∈ (0,∞), can be seen
as a normalization of the numerator, we name this normalization the partition
function, and denote it with Z ..= Tr[ e−λ2Ĥ/k].

ρ = e−λ2Ĥ/k

Tr[ e−λ2Ĥ/k]
Tr
[
ρĤ
]

= 〈E〉

(19)

(20)

Then λ2 is a constant that is fixed by 〈E〉, and a dimensional analysis of λ2/k
gives that it has the physical dimensions of the standard reciprocal temperature
β(〈E〉) = 1/kT (〈E〉). Thus we can call λ2/k ≡ β, and we arrive at our thermal
state for ρ.

ρ = e−βĤ

Tr[ e−βĤ] (21)

We conclude that the thermal state is a diagonal matrix—in the eigenbasis of
the Hamiltonian—where the probability eigenvalues correspond to the classical
canonical distribution (when treated as a function of their energies, pi(Ei)).

Finally, we should mention one technicality. The method with Lagrangian
multipliers can only find candidate points for extremum values. In this case, the
ρ that we found really is a maximum of the von Neumann entropy, however, a
rigorous proof of this will be arduous, so here it is left as an exercise for the
restless reader.
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