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1 Introduction
The primary motivation behind this thesis is to address two problems.

Problem I. As far back as 1961, Rolf Landauer published a seminal paper [1]
that until today has continued to generate disagreement and controversy. Lan-
dauer’s argument concerns physical information processing devices (such as com-
puters etc.). His claim is that there is a link between the logical operations
performed on the information and the underlying physics of the system that en-
codes the information. Specifically, Landauer says that “logical irreversibility1 is
associated with physical irreversibility and requires a minimal heat generation”.
Unfortunately he does not provide a general derivation of what is now known
as Landauer’s principle—instead, he argues for his conclusion by demonstrat-
ing its validity in certain physical systems. This approach is cultivated to this
day, as authors keep publishing papers with conflicting accounts. In this thesis
(predominantly in section 5) we attempt to provide an argument in favour of
Landauer’s ideas, based only on general physical principles. The ambition is that
such arguments can catalyze consensus and reduce the confusion surrounding
Landauer’s principle. �

Problem II. The question of how to assign ontological interpretations to some
results predicted by Quantum Mechanics (and observed in experiments) is a very
active ongoing debate. Therefore, it was very exciting to read a paper authored
by Adán Cabello, Mile Gu, Otfried Gühne, Jan-Åke Larsson, and Karoline Wies-
ner in 2016, where they claim to demonstrate experimentally testable differences
between two classes of interpretations for Quantum Mechanics [2]. In fact, their
claim was ever stronger; one class (to which many cherished interpretations be-
long) is shown to produce unphysical predictions, casting considerable doubt on
their feasibility. The approach taken by Cabello et al.—to produce experimen-
tally falsifiable predictions—is the arguably the most important cornerstone
for the whole of Physics, and such claims deserve serious attention from the
community. But “extraordinary claims require extraordinary evidence”, and in
particular, the theoretical argument for such claims need to be carefully scruti-
nized. Since all interpretations of Quantum Mechanics is initially imagined to
account for the same mathematical framework, we have good reasons to suspect
that any difference between the interpretations should be minimal, contrary to
the claim of Cabello et al. In this thesis (section 7) we conduct a careful ex-
amination of the argument and identify a crucial problem, which unfortunately
invalidates their conclusion. �

Seemingly, these two problems have little to do with each other, but it was in
fact the efforts to examine the second problem that required an appreciation of
the first. Cabello et al. employs Landauer’s principle as a step in their argument,
and therefore, an understanding of the first problem is of great benefit to the
reader wanting to recognize the objections put forth to the second problem.

Nevertheless, the reader is not in any way discouraged to jump ahead to
whichever section appears most interesting. Care has been taken to properly

1Simply stated, a process is considered logically irreversible if we cannot uniquely deter-
mine some previous state from the current state.
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refer to relevant sections whenever claims are made that is backed up elsewhere,
and in that spirit, we will conclude this introduction with a bird’s eye view of
the content in the main sections.

Also, before we begin, a short remark about Maxwell’s demon is in order.
Even though the most common application of Landauer’s principle is to give a
detailed account of why any scheme such as Maxwell’s demon is impossible, we
will not enter into that discussion in this thesis. The literature on this subject
is dense, and curious readers will no doubt be able to find appropriate resources.
A good place to start can be Bennett’s paper from 1987 [3].

1.1 A quick guide to the sections
Sections 2, 3 and 4. Relevant theoretical and conceptual background for the
main body of work. �

Section 5. Addresses problem I, with an argument in favour of Landauer’s
principle based on classical physics. �

Section 6. An extension of Landauer’s ideas to a fully quantum-mechanical
framework. Not directly connected to problems I and II, but defines a possible
path forward for extending Landauer’s principle to Quantum Mechanics. �

Section 7. Addresses problem II, with an argument contrary to the conclusion
of Cabello et al. �

Section 8. Defines further work, and argues briefly for a third class of inter-
pretations of Quantum Mechanics, not considered by Cabello et al. �
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2 Some quantum theory

In order to model statistical distributions, or classically proba-
bilistic notions, in Quantum Mechanics—as we will do in sections
3, 4, and 6—we employ the formalism of the density operator.
We will here provide a few necessary definitions and some brief
intuitive discussions, all presented as a compact review. Readers
familiar with these concepts may prefer to skip ahead to section 3.

2.1 The density operator
In Quantum Mechanics a physical system is associated with a complex Hilbert
space H, where a Hilbert space is a vector space (H,+, ·) together with a defi-
nition of a sesquilinear2 inner product (· , ·), and H is said to be complex since
(H,+, ·) is a vector space over the field of complex numbers, C.

H ..= (H,+, ·, (· , ·)) (1)

In the general case, we would allow H to be a separable3 space, but in this
thesis all discussions are limited to the finite-dimensional case, and we denote a
Hilbert space of n dimensions with Hn. By conversion, we denote vectors ψ in
Hilbert space surrounded by a ket.

|ψ⟩ ∈Hn (2)

We also introduce a shorthand notation (Dirac notation) for the sesquilinear
product, (· , ·).

( |ϕ⟩ , |φ⟩ ) ≡ ⟨ϕ|φ⟩ (3)

In elementary quantum theory we use normalized vectors |ψ⟩ ∈Hn to repre-
sent the states for the physical system, but this construction has one significant
limitation. It is not possible to create a statistical or probabilistic mixture of
states, since adding vectors from Hn will just produce other vectors and not
statistical mixtures. This limitation is overcome by modelling physical states
with linear maps—usually denoted ρ̂—which act on vectors in the appropriate
Hilbert space Hn. We will here define properties for this map ρ̂, and then derive
and discuss its properties.

Axiom 2.1 (States in Quantum Mechanics). In Quantum Mechanics,
a physical system with a finite number of states is associated with a finite
dimensional Hilbert space Hn. States of the system are modelled by positive
semidefinite, and linear, map ρ̂ : Hn→Hn, for which Tr

[
ρ̂
]

= 1.

2A sesquilinear inner product on a complex vector space, is an inner product that is linear
in the second argument, and exchanging the vectors introduces a complex conjugation. This
implies that it is linear under complex conjugation in the first argument.

(|ϕ⟩, |φ⟩) ≡ (|φ⟩, |ϕ⟩)∗ ∧ (|ϕ⟩ , b |φ⟩) ≡ b(|ϕ⟩, |φ⟩) ⇒ (a|ϕ⟩, |φ⟩) = a∗(|ϕ⟩, |φ⟩)
3Loosely speaking, a vector space is separable if it allows for an orthogonal and complete

basis with a set of countably infinite basis vectors. {|ei⟩ | i ∈ N : ⟨ei|ej⟩ = δij}
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We have some remarks to this axiom.

Remark I. We also introduce a shorthand Dirac notation for taking the inner
product between a vector |ϕ⟩, and the vector resulting from the map ρ̂ acting
on another vector |φ⟩.

( |ϕ⟩ , ρ̂ |φ⟩ ) ≡ ⟨ϕ|ρ̂φ⟩ (4)
�

Remark II. A map ρ̂ is said to be positive semidefinite if the complex scalar
⟨φ|ρ̂φ⟩ is zero or positive for any |φ⟩ ∈ Hn. This implies that all eigenvalues for
ρ̂ are either zero or positive real numbers. �

Remark III. The word “operator” is frequently used instead of “map”, and
hence ρ̂ is most often called a density operator. For finite Hilbert spaces we can
choose some finite basis for Hn, and express the density operator as a matrix,
thus ρ̂ is sometimes also referred to as a density matrix. From now on we will
assume this vocabulary. �

Remark IV. In general terms, the trace of some operator Â is defined as a sum
over an arbitrarily chosen orthonormal and complete basis {|φi⟩} for Hn, where
we take the inner products with each basis vector, i.e. Tr

[
Â
] ..=

∑
i ⟨φi|Âφi⟩.

The trace is then shown to be invariant under change of basis (section A.4). �

The finite-dimensional case of the spectral theorem (see section A.1) allows
us to show that ρ̂, as defined by axiom 2.1, becomes a diagonal matrix in some
appropriately chosen orthonormal basis {|ϕi⟩} of Hn.4 We denote the positive
semidefinite eigenvalues in the eigenbasis {|ϕi⟩} as {Pi}, and we can write ρ̂ as
a diagonal operator in terms of its eigenvectors.

ρ̂ =
n∑

i=1
Pi |ϕi⟩⟨ϕi| (5)

In section A.2 we demonstrate how to conduct the transition from a matrix
notation, as in theorem A.1, to the sum over eigenvalues in the above expression,
and the notation |ϕi⟩⟨ϕi| is defined there. Note that the requirement Tr

[
ρ̂
]

= 1
from axiom 2.1 implies that the eigenvalues {Pi} are normalized to unity. It
is then possible to relate an eigenvalue Pi of some state |ϕi⟩ to the probability
for that state.

From a physical point of view, equation (5) is more intuitively helpful than
the initial axiom 2.1. Here we can view ρ̂ as a classical probability distribution
{Pi} over a corresponding set of orthogonal pure states {|ϕi⟩}, and with these
two sets we can describe the state of any quantum system.

However, even though a set of orthonormal pure states and their probabil-
ities are sufficient, they are not necessary. In fact, any set of normalized pure
states {|φj⟩} (not necessarily complete, nor orthogonal), and their correspond-
ing probabilities {Pj |

∑
j Pj = 1} is all we need to construct the state of a

quantum system.

4We can make the argument brief by noting that since all eigenvalues of ρ̂ are non-negative
they are clearly real, and thus ρ̂ is a Hermitian operator, a subset of normal operators, for
which theorem A.1 applies.
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ρ̂ =
∑

{|φj⟩}

Pj |φj⟩⟨φj | (6)

Note that if we express a density operator in some arbitrary basis, the result-
ing matrix will generally not be diagonal, as it was in equation (5). However,
we know that some diagonalizing basis exists, so with some effort, any density
operator can be written on its diagonal form.

In the remainder of the thesis, when we define some density operator ρ̂ as
associated with a Hilbert space Hn, we mean this in the sense of axiom 2.1, and
we will use equation (5) or (6) to represent the system.
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3 Entropy and the second law

The concept of entropy has a long history. In this section, we
will make a few stops along the way, and discuss some foundational
concepts in order to understand the second law of Thermodynamics.
Note that we will not focus on historical results in all their colourful
detail, but instead put emphasis on the more modern statistical
formulations—where probabilities are used to define entropy, which
in turn enable us to express the second law.

Probability
theory → Entropy → The second law of

Thermodynamics

We will also discuss entropy in Information Theory (see sec-
tion 3.5), and derive Claude Shannon’s famous formula from three
credible assumptions. The mathematical properties exposed in this
section will also be useful in physical considerations (for instance
in section 5.6).

3.1 The importance of closed systems
Entropy arguments for physical systems—such as the one we will carry out
in section 5—generally make statements about what must hold in some system
regardless of the specific dynamics, and in order to make such strong statements,
generally, we need to close off our system from outside tampering by evil demons.

Here, we define a closed (physical) system to mean one which has no inter-
actions with any outside environment, or one for which the interactions are so
weak as to make them negligible in the context of our theoretical model.5

3.2 Entropy and second law in Classical Thermodynamics
We shall begin a restricted historical expose of entropy with a brief discus-
sion about the most central features in classical Thermodynamics, as developed
by Clausius.

Let a closed physical system undergo some process, such that the system
begins in a macroscopic state A, and ends in the macroscopic state B. The
change in entropy, ∆S ..= SB − SA is defined, as an integral over a continuous
ensemble of equilibrium states, where T is the temperature of the system, and
dQ is an infinitesimal transfer of heat into the system. [4]

∆S ..=
∫ B

A

1
T

dQ (7)

There are a few basic consequences we should point out.

Remark I. Only changes in entropy are well defined. So if we are asking for
the entropy of a system at some particular state—such as, what the value of
SA is—it is only defined up to an arbitrary additive constant. �

5This definition can sometimes be referred to as an isolated system.
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Remark II. This integral requires temperature to be well defined at each point.
Thus for a closed system in Classical Thermodynamics, we can only define
entropy for states in equilibrium. �

Remark III. The entropy S is derived and measured from the macroscopic
properties of the system, S(V, T,N), and there are no references to microstates,
or probabilities, such as there will be in more modern statistical theories. (See
section 3.3, 3.6, and 3.7.) �

In this framework, the second law of Thermodynamics becomes a proposed
macroscopic principle for closed systems in equilibrium, stating that, any change
in entropy cannot be negative. The principle is observed to hold in experiments.

∆S ≥ 0 (8)

3.3 Entropy and second law in Statistical Mechanics
In Boltzmann’s kinetic theory of gases, he proposed a new definition of en-
tropy—shown to be in agreement with Clausius6 —that was built on statistical
notions of the microscopic behaviour of a physical system, rather than its macro-
scopic properties.

Let M represent the macroscopic properties that we can observe a sys-
tem to have (such as volume, pressure, and temperature). To the physical
macrostate M, we assign a measure ΩM, for the number of accessible microstates
that our system can assume while satisfying M. Boltzmann then defined entropy
for a macrostate M, as the logarithm of the number of accessible microstates.7

SB(M) ..= k ln ΩM (9)

The factor k is Boltzmann’s constant. It scales the entropy and provides appro-
priate units such that this notion of entropy agrees with Clausius.

Note that every microstate compatible with M is treated on equal footing
(it simply adds 1 to ΩM ). This is equivalent with the assumption that each
microstate is equally probable.

If in Clausius’ Classical Thermodynamics, the second law felt somewhat ad
hoc, with the statistical definition of entropy the second law becomes much less
mysterious. We can state the second law of Thermodynamics as the following
theorem, based on the analysis by Lev Landau and Evgeny Lifshitz, [6] (see
pages 28 and 29).

6This connection is however not discussed here.
7Equation (9) can be derived from course-graining a classical phase space, as shown by

Frigg and Werndl [5].
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Theorem 3.1 (Second law of Thermodynamics, in Statistical Me-
chanics). If at some time t the entropy of a closed macroscopic system
does not have its maximum value, then the (most probable8) development
at subsequent times t+∆t is such that the entropy will increase, or at least
remain constant.

SB(t+∆t)− SB(t) ≥ 0 ∀ ∆t ≥ 0 (10)

At macroscopic equilibrium, the system will assume the macrostate with
the greatest possible entropy.

To motivate why the above theorem 3.1 holds, consider two macrostates M
and N of some physical system, such that ΩM ≫ ΩN . The system will over-
whelmingly prefer the macrostate M , not because any microstates compatible
with M is somehow different to those compatible with N , but simply because
there are so many more of them. A random walk through the space of mi-
crostates is almost guaranteed to give us the macroscopic behaviour M , and in
most considerations, due to large number of degrees of freedom in any macro-
scopic system, a very large number will be assigned to Ω for a very small set
of closely related macroscopic states, and Ω has negligible values for all other
macroscopic states. This situation is often characterized by noting that Ω has a
very sharp peak around some macrostate M . Thus decreasing entropy is strictly
speaking not prohibited, it is just really, really unlikely to happen in large sys-
tems. Typically, we can expect to consider timescales much longer than the
age of the universe before a macroscopic system spontaneously does something
unexpected.

Note however that the situation changes when we consider small systems,
with considerably fewer degrees of freedom. Suddenly, fluctuations into states
of lower entropy are more likely, and this will motivate us to talk about the
behaviour of entropy, on average. In section 3.6 we will take a closer look at
small systems.

Another important remark is that—even though we assert that entropy
cannot decrease—this says nothing about how fast the entropy will increase.
Depending on properties of the system, the evolution to a high entropy state
will progress at differing rates.

3.4 Probabilities in physical systems
As we are moving closer to modern concepts of entropy, and probabilities will
become central for definitions.9 As we shall later demonstrate in section 3.5,
any probability distribution {P (x)} over some finite set of mutually exclusive
events {x} can be associated with an entropy. However, the conceptual inter-
pretation assigned to entropy will partially depend on our attitude towards the
probabilities in the first place. Therefore, we begin by a brief exposition of
probabilities—as they are understood and conceptualized in physics.

8For large (macroscopic) systems the probability of transitions into states of lower entropy
is so unlikely that they, for all practical purposes, are never observed.

9Already in the Boltzmann formulation, we said that each microstate was equally probable.
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Following closely an argument made by Edwin T. Jaynes [7], broadly speak-
ing we can divide attitudes towards probabilities into two different schools of
thought, here referred to as the “objective” and “subjective” attitude.

The objective school of thought regards the probability of an event as some
objective property of that event, or the physical system which generates it. This
is predominantly meant in the following sense: Underlying any probability there
is either some physical propensity for different events10, or, some measurement
of a frequency ratios that could (at least in principle) be made, and in the limit
of an infinite number of measurements, probabilities will be reproduced from the
frequencies of experimental outcomes. In the objective attitude, testing whether
a probability distribution {P (x)} is accurate, is to answer the question: “Does
{P (x)} correctly represent the observed distribution over {x}?”

We can note that in the physical world it is difficult to come by an infinite
set of measurements. Thus, relying solely on frequency ratios implies that we
can never be absolutely certain that a probability distribution is accurate, we
can only reduce our doubts to be arbitrarily small.

In contrast, the subjective school of thought regards probability as an expres-
sion of the ignorance that some agent has. In this approach, the probability
of an event is a formal expression of some degree of belief that an event will
occur—when taking all available information into account. In this approach,
we are concerned with finding the best possible inference, when there is in fact
not enough available information to construct a certain prediction. In the sub-
jective attitude, testing whether a probability distribution {P (x)} is accurate is
to answer the question: “Does {P (x)} correctly represent our state of knowledge
about the value of {x}?”

Since any frequency measurement or physical propensity can be incorporated
into our state of knowledge, any question asked in the objective framework
also has meaning in the subjective framework [7]. But there are some ideas
one may pursue that only seems to make sense in the context of subjective
probabilities. For instance, the approach taken in section 4.2, where we will
derive the canonical thermal state in Quantum Mechanics by finding the most
appropriate representation given incomplete information.

However, as Jaynes points out, we can expect both the objective and sub-
jective schools of thought to be applicable in physics, and “needless controversy
has resulted from attempts to uphold one or the other in all cases” [7].

Regardless of what point of view is found more suitable in some particular
situation—the mathematical framework for both attitudes are identical, and
thus their differences are mostly related to the kind of questions we might ask.

3.5 Entropy in Information Theory
In 1948, Claude Shannon published a seminal paper “The mathematical theory
of communication” [9] that would become the starting point for the field of
Information Theory.11

A central achievement of Shannon’s is his idea to look for a measure of

10For instance a symmetry argument can convince us that the propensity of a coin-toss to
give us heads must be 1/2.

11The original title was “A mathematical theory of communication.”, but in 1949 the paper
was published as a book, coauthored with Warren Weaver, with a slightly altered title.
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how much “uncertainty” that resides in a probability distribution. Usually, this
kind of uncertainty is referred to as Shannon entropy12, and it is calculated
from the probabilities {P (x)} over a finite set of mutually exclusive events {x}.
The expression for Shannon entropy H is derived as a unique solution to three
axioms that we require H to satisfy. The axioms and the derivation is presented
in section 3.5.3, and the result is as follows.

H({P (x)}) = −K
∑
{x}

P (x) log2P (x) (11)

Here, we define 0 log2 0 ..= limx→0(x log2 x) = 0, and the constant K simply
determines the unit in which entropy is measured. Note that choosing a different
basis for the logarithm is equivalent to changing K by some numerical factor.
For most applications in Information Theory we set K = 1, and thus measure
information in bits.13

H({P (x)}) ..= −
∑
{x}

P (x) log2P (x) (in bits) (12)

Let us examine an example to illustrate some key points, and demonstrate how
equation (12) can be useful.

3.5.1 Example: Application of Shannon entropy
Consider a device that has three light-bulbs in the colours red, green, and blue.
When turned on, the device will light up one bulb at a time, to create a random
sequence of events. I.e. we may get a sequence such as:

{green, blue, red, red, red, blue, red, · · · } (13)

However—to make this example a bit more interesting—we assume the device
is constructed such that the probability of red is twice the probability of green
or blue.

P (red) = 1
2

; P (green) = P (blue) = 1
4

(14)

We then want to record whatever sequence of colours the device is producing,
using a binary memory (such as a computer memory). And we ask ourselves:
What is the theoretical minimum for the number of bits needed to store a se-
quence of colours produced by the device, on average? Or equivalently: What
is the average number of bits needed to store a single event (red, green or blue)?

We can think of a bit as the answer to a yes/no question (where we can label
“yes” with 1, and “no” with 0). In this context, the average number of bits will
translate to the average number of questions we need to ask. Since red is the
most likely colour, it will be a good idea to first ask: “Is the bulb red?”, and

12Sometimes also referred to as information, Shannon information or simply entropy. An
appropriate label can be determined from context, and how to make this distinction is dis-
cussed later in this section.

13We note that Shannon entropy has no physical unit in the same manner as say mass,
distance, or Boltzmann entropy (section 3.3), but we still need to distinguish between the
different measures, similarly to how degrees and radians are differentiated.
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with probability 1/2 we do not need to ask any more questions. However, if the
answer is “no”, we have to ask again: “Is the bulb green?” Then, regardless
of the answer, we will know the colour of the bulb. Thus we can calculate
how many bits (or questions) we need on average, by weighing them by their
probabilities.

1
2

1 bit + 1
2

2 bits = 1.5 bits (15)

However, not all situations lend themselves to be easily analyzed in terms
of yes/no questions. In that case, we can use the general formula of Shannon
entropy, from equation (12), to find the minimum amount of information we
need to store.

Hrgb = −
(

1
2

log2
1
2

+ 1
4

log2
1
4

+ 1
4

log2
1
4

)
=

= 1
2

log2 2 + 1
2

log2 4 = 1
2

(1 + 2) = 1.5 bits
(16)

Given that we can store the information about the colours optimally, we will
need (on average) 1.5 bits for each event. Thus for a sequence of, say, 10 000
colours, we can expect to consume about 15 000 bits (again, on average since
any particular sequence can vary in its memory consumption).

Conceptually, there are a few different ways to approach the result of this
calculation. Let us say that we are considering a sequence of 10 000 events. The
simplest conceptualization is just in terms of how much physical memory in our
binary storage we will need for such a series, and we can loosely speaking say
that we have calculated some amount of knowledge, or information.

However, in physics, there is a different conceptualization which is very use-
ful. Consider the set of every possible sequence if 10 000 events, let us call it
X10 000. Since the cardinality of this set is very large (310 000 members), the
probability of any specific member being realized is of course very low, but
more importantly, the probabilities are not uniformly distributed. Members
that have a distribution of red, green, and blue close to that of the probabilities
in equation (14) will be more likely than members of X10 000 with a distribution
of red, green, and blue that does not reflect these probabilities. So even though
we are quite clueless about which member of X10 000 will be realized when we
turn on the device, the fact that the distribution is not uniform over X10 000,
actually constitutes some knowledge or information about the outcome. In this
construction, we can view the calculation from equation (16) as an answer to
the question: How much more information do we have to provide (on average),
to reduce the initial probability distribution over X10 000, to a distribution with
a certain outcome (where the distribution has a spike at one single member
and is zero everywhere else)? The answer is 15 000 bits (on average), and we
can loosely speaking say that we have calculated our uncertainty, ignorance, or
entropy associated with the initial, non-uniform, probability distribution over
X10 000.

We can then argue that our uncertainty is just some measure of how much
knowledge we lack, and likewise, we can generally view entropy as an absence of
information. Since this mathematics of information, or uncertainty, are identi-
cal, we can only turn to the context of the initial question to determine how to
think conceptually about the result of such a calculation. For example, when
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calculating the entropy as described by Boltzmann, in section 3.3, we are clearly
evaluating some quantity of ignorance, since we never expect to actually mea-
sure the exact microstate of a large macroscopic system.

3.5.2 Example: The composition law
Before we will walk through Shannon’s assumptions in the general case, and
derive equation (11), let us look at a concrete example of the so-called “compo-
sition law”, one property which we will require H to satisfy.

Consider the following probability distribution over mutually exclusive events.{
1
12
,

1
4
,

1
6
,

1
2

}
(17)

Say that we combined the first and second event into one event with total
probability 1/3, yielding a new set of probabilities {1/3, 1/6, 1/2}. We can
draw two tree diagram, one for each situation.

Figure 1: Two tree diagrams for identical probability
distributions. In the rightmost tree, the events (nodes in
the diagram) with probabilities 1/12 and 1/4 have been

composed to create two successive events.

Since the final probabilities in both trees are identical, the total amount of
uncertainty (or entropy) H should be equal in both cases. However, for the right-
most tree of figure 1, the total uncertainty should be possible to decompose into
our uncertainty from {1/3, 1/6, 1/2}, with some remaining uncertainty, should
the event with probability 1/3 be realized. The remaining uncertainty should be
calculated as if it was any independent probability distribution, however, since
it is only realized with probability 1/3 we put this weight factor in front.

H

(
1
12
,

1
4
,

1
6
,

1
2

)
= H

(
1
3
,

1
6
,

1
2

)
+ 1

3
H

(
1
4
,

3
4

)
(18)

This is a property that we wish any measure H of uncertainty, entropy, or
information to have, and we will generalize the idea in the next section as the
composition law (axiom 3.3).

3.5.3 Deriving Shannon entropy
Shannon’s seminal paper from 1948 [9] includes a derivation of the entropy for-
mula. However, when it comes to explanatory details, Shannon’s proof is quite
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barren. Here, we endeavour with a detailed reconstruction of the derivation, ex-
posing every step and removing any ambiguity so that the reader can follow the
derivation with minimum effort. It would generally be appropriate to relegate a
proof like this to the appendix, but there are some details here that can create
a deeper understanding of entropy. However, the reader in a hurry, or anyone
familiar with Shannon’s derivation, can skip ahead to section 3.5.4.

Consider a finite set of n mutually exclusive events, {x}. Our intention is to
derive the relation for Shannon entropy, shown in equation (11), for a probability
distribution {P (x)} over this set of events.

Shannon begins by defining three axioms that a measure, H, of uncertainty,
a.k.a. entropy, should satisfy.

Axiom 3.1. H is continuous in all probabilities {P (x)}.

Axiom 3.2. If all {P (x)} are equal, i.e. P (x) = 1/n, then H should be a
strictly increasing function of n.14

Axiom 3.3 (The composition law). If a subset of {x} is composed to
create successive events, the originalH splits into two terms. One represents
a measure of entropy in the first set of events, and the second represents the
entropy in the remaining events, weighted with its probability—as discussed
in detail below.

Consider selecting a subset of members from the set {P (x)} and compose
them into a set C, like it was a probability of a single event.

C = {P (xC)} for some subset {P (xC)} ⊆ {P (x)} (19)

We denote the set of members that were not selected as {P (xR)}; they are
the remaining members. By construction we then have that C∪{P (xR)} =
{P (x)}, and C ∩ {P (xR)} = ∅. We define the probability of the composed
set, P (C), as the sum of its individual probabilities.

P (C) ..=
∑

C

P (x) (20)

In a new set C ′, we renormalize the probabilities from C such that C ′ sums
up to 1.15

C ′ ..=
{
P (x)

∣∣∣ ∀P (y) ∈ C : P (x) = P (y)
P (C)

}
⇒

∑
C′

P (x) = 1 (21)

The entropy can then be evaluated from the probability for the com-
posed event, P (C), together with all probabilities for the remaining events
{P (xR)}, plus the entropy which remains if C should be realized. The latter
happens with probability P (C) and is thus weighted accordingly.

H({P (x)}) = H({P (C)}∪{P (xR)}) + P (C)H(C ′) (22)

14With equally likely events, there is more choice, or uncertainty, when there are more
possibilities.
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Before immersing into the derivation of Shannon entropy, let us formulate a
corollary from the composition law (property 3.3) that will be useful in our proof.

Corollary 3.1 (to property 3.3). Let n = |{P (x)}| be divisible by s1,
such that n = s1s2. Also, let all probabilities be equal P (x) = 1/n ∀ x.
We can apply the composition law s1 times on the set {P (x)} in order to
create a tree diagram where the first level branches into s1 events, each with
probability 1/s1. On the second level, each event branches s2 times, each
with probability 1/s2.

Calculating the entropy for each level separately, according to the composi-
tion law, will yield the following result.

H

(
1
n
, · · · , 1

n

)
= H

(
1
s1
, · · · , 1

s1

)
+H

(
1
s2
, · · · , 1

s2

)
(23)

Proof (Corollary 3.1). We apply the composition law (property 3.3) sequen-
tially, at the set of remaining probabilities {P (xR)}. After the first application,
we replace the first s1 arguments in H by one argument and add one weighted
term.

H = H

(
1
s1
,

1
n
· · · , 1

n

)
+ 1
s1
H

(
1
s2
, · · · , 1

s2

)
(24)

The pattern repeats for each application, and after the second application we
have two weighted terms.

H = H

(
1
s1
,

1
s1
,

1
n
· · · , 1

n

)
+ 1
s1
H

(
1
s2
, · · · , 1

s2

)
+ 1
s1
H

(
1
s2
, · · · , 1

s2

)
(25)

After s2 applications we have replaced all n arguments of our original H with
s1 arguments (where s1 ≤ n is typically much smaller than n), and we have
introduces a series of weighted terms.

H = H

(
1
s1
, · · · , 1

s1

)
+ 1
s1
H

(
1
s2
, · · · , 1

s2

)
+ · · ·+ 1

s1
H

(
1
s2
, · · · , 1

s2

)
(26)

Since we have s1 identical terms with the coefficient 1/s1, the expression can be
simplified to the right-hand side of equation (23), of corollary 3.1. �

Note that we can apply the composition law, and thus corollary 3.1, not only
on the entropy corresponding to the first level in a tree diagram. We can also
create sequences of events that are larger than two, as illustrated in figure 2.

15We have overlooked the pathological case when P (C) = 0, where renormalization ac-
cording to equation (21) becomes undefined. In that case we simply define H(C′) ..= 0 in
equation (22).
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Figure 2: Illustration of the composition law applied at
several levels in of a tree diagram.

Armed with corollary 3.1 and some understanding of the composition law,
we will state, and then prove, the formula for Shannon entropy.

Theorem 3.2. The only function H({P (x)}) that satisfies the axioms 3.1,
3.2, and 3.3, is on the following form, where we define 0 log20 ..= 0.

H({P (x)}) ..= −K
∑
{x}

P (x) log2P (x) (27)

Proof (Theorem 3.2). Consider the special case where all probabilities are
equal, {P (x)} = 1/n, and to keep the notation clear we define a special func-
tion f for this case.

H

(
1
n
,

1
n
, · · · , 1

n

)
=.. f(n) (28)

Then—again looking at another special case—consider n being a whole power,
n = sσ. We can then apply corollary 3.1 σ times, each time at the level below
the current. This gives us a tree diagram with σ levels, where each node branches
into s equally likely possibilities. From equation (23), of corollary 3.1, we find
that we should add one term f(s) for each level in the diagram, and thus f can
be evaluated in two ways.

f(sσ) = σf(s) (29)
For some other whole power n = tτ , we of course get the same relation.

f(tτ ) = τf(t) (30)

Then, for every freely chosen values of s, t and σ, there exists some τ to fulfill
the following inequality.

tτ ≤ sσ < tτ+1 (31)
We take the logarithm of this inequality (using log2 for later convenience). Then
we divide by σ log2 t, and subtract τ/σ.

τ log2 t ≤ σ log2 s < (τ + 1) log2 t ⇒ (32)

τ

σ
≤ log2 s

log2 t
<

τ

σ
+ 1
σ

⇒ (33)

0 ≤ log2 s

log2 t
− τ

σ
<

1
σ

(34)

We will come back to this result. Now, from property 3.2, we find that f
must be a strictly increasing function, thus we can translate the inequality from
equation (31) to an inequality in f , and then we apply equation (29).

tτ ≤ sσ < tτ+1 ⇒ f(tτ ) ≤ f(sσ) < f(tτ+1) ⇒ (35)
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τf(t) ≤ σf(s) < (τ + 1)f(t) (36)

We divide this by σf(t), and subtract τ/σ.

τ

σ
≤ f(s)

f(t)
<

τ

σ
+ 1
σ

⇒ (37)

0 ≤ f(s)
f(t)

− τ

σ
<

1
σ

(38)

We then combine equation (34) and (38) by subtracting the first from the second,
such that τ/σ cancel, and the result is bounded by ±1/σ.

− 1
σ
<

f(s)
f(t)

− log2 s

log2 t
<

1
σ

⇒ (39)

∣∣∣∣f(s)
f(t)

− log2 s

log2 t

∣∣∣∣ < 1
σ

(40)

All the variables s, t, and σ were chosen as free parameters, thus this relation
holds for any values. In particular, we must require this to hold for any s and
t, as σ →∞.

lim
σ→∞

∣∣∣∣f(s)
f(t)

− log2 s

log2 t

∣∣∣∣ = 0 ∀ s, t ⇒ (41)

f(s) = K log2 s (42)

From property 2, we see that K must be chosen positive in order for f to be
strictly increasing.

f(s) = K log2 s where K > 0 (43)

With this result, we retrace our steps using the equalities f(sσ) = σf(s) and
n = sσ.

f(n) = f(sσ) = σf(s) = σK log2 s = K log2 s
σ = K log2 n (44)

Thus, we have found H for equal probabilities.

H

(
1
n
,

1
n
, · · · , 1

n

)
= K log2 n (45)

However, we are of course looking for the general case, with arbitrary proba-
bilities. Thus we begin anew and consider some finite set of events {x}, with car-
dinality n, and whose probabilities are limited to rational values {P (x)|P (x) ∈
Q}. This means that there exists some common denominator p such that each
probability {P (x)} can be written as a fraction of whole numbers.

P (x) = px

p
where px ∈ N0 and p =

∑
{x}

px (46)

Such probabilities can be created from composing smaller probabilities from a
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set of p members with equal probabilities. Thus we apply the composition law
on H(1/p, · · · , 1/p), n times.

H

(
1
p
, · · ·, 1

p

)
=

= H

(
p1

p
, · · ·, pn

p

)
+ p1

p
H

(
1
p1
, · · ·, 1

p1

)
+ · · ·+ pn

p
H

(
1
pn
, · · ·, 1

pn

) (47)

The term H(p1/p, · · ·, pn/p) = H({P (x)}) is what we are looking for.

H({P (x)}) =

= H

(
1
p
, · · ·, 1

p

)
− p1

p
H

(
1
p1
, · · ·, 1

p1

)
− · · · − pn

p
H

(
1
pn
, · · ·, 1

pn

) (48)

Note how the entropy we are looking for is the total entropy over the very large
set of p events, minus the entropies that comes from each composition, weighted
with its probability.

We multiply the first term by 1 =
∑

xP (x) =
∑

xpx/p, and group terms
with identical coefficients.

H({P (x)}) =

= p1

p

(
H

(
1
p
, · · ·, 1

p

)
−H

(
1
p1
, · · ·, 1

p1

))
+ · · ·+

+pn

p

(
H

(
1
p
, · · ·, 1

p

)
−H

(
1
pn
, · · ·, 1

pn

)) (49)

From equation (45), we have an expression for H over equal probabilities.

H({P (x)}) =

= p1

p
(K log2 p−K log2 p1) + · · ·+ pn

p
(K log2 p−K log2 pn) =

= −K(p1

p
log2

p1

p
+ · · ·+ pn

p
log2

pn

p
)

(50)

As defined, px/p = P (x), and thus we have found the Shannon entropy, from
equation (11), for rational probabilities.

H({P (x)}) ..= −K
∑
{x}

P (x) log2P (x) (51)

To show that this expression is true for non-rational probabilities, we only
have to note that the rational numbers are dense in R, and axiom 3.1 demands
that the function is continuous. Thus it holds for any P (x) ∈ R. �

3.5.4 Entropy is additive
An important property of entropy is how it relates to so-called joint events.

Consider two sets of events {x} and {y}, where each set contains mutually
exclusive and collectively exhaustive events, but both an event in {x} and in {y}
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will occur. Let {P (x, y)} be the joint probability distribution over the combined
events {x} and {y}. The entropies over the joint probability distribution, and
the individual ones, are then defined as follows.

H({P (x, y)}) ..= −
∑

{x},{y}

P (x, y) log2P (x, y) (52)

H({P (x)}) ..= −
∑
{x}

P (x) log2P (x) where P (x) =
∑
{y}

P (x, y) (53)

H({P (y)}) ..= −
∑
{y}

P (y) log2P (y) where P (y) =
∑
{x}

P (x, y) (54)

It is then possible to show that the sum of individual entropies is always equal
to or larger than the entropy of the joint probability distribution. [1]

H({P (x)}) +H({P (y)}) ≥ H({P (x, y)}) (55)

Here, equality is assumed if and only if the events are independent of each other,
i.e. P (x, y) = P (x)P (y). Thus entropy of independent events is additive.

3.6 Generalized entropy and the second law
With the framework of evaluating entropy from probability distributions over
sets—in section 3.5—we can begin to assign an entropy to a broader class
of physical systems than those where Boltzmann entropy is applicable (section
3.3). Say that we for some reason or another cannot assign a uniform probability
distribution to our set of accessible microstates {µ}, but instead need to rely on
a variable probability distribution {P (µ)}. Additionally, let us assume that the
number of microstates is finite—this will be sufficient for our purposes—and
clearly, the states are required to be mutually exclusive, just as our events were
when introducing Shannon Entropy. In the literature, this type of entropy is
referred to as Gibbs entropy, hence we denote it SG.16

SG({P (µ)}) ..= −k
∑
{µ}

P (µ) lnP (µ) (56)

Remark I. Clearly, this Gibbs entropy looks very similar to Shannon Entropy
from section 3.5, equation (12)—with the noticeable differences being the basis
for the logarithm, and Boltzmann’s constant (scaling the quantity and supplying
physical units). However, we should emphasize that this probability distribu-
tion {P (µ)} has an entirely different origin; relating to a model of a physical
system, and not some abstract information. Nevertheless, since the mathemat-
ical formulation is the same, we can prove theorems in either framework, it is
just that results will have different interpretations depending on the context in
which we operate. �

16The name Gibbs Entropy often refers to an integral over some probability density, ρ,
over some continuous phase space Γ .

SG′ ..= −k

∫
Γ

ρ ln ρ dΓ

This formula will transform into the sum in equation (56) if we let the continuous phase space
Γ become a finite set of states {µ}.
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Remark II. Comparing this entropy to Boltzmann entropy from section 3.3,
in Statistical Mechanics, we simply counted all microstates compatible with the
macrostate of the system (giving each an equal probability). Here, macrostates
will be replaced by some set of conditions, and under these conditions, we cal-
culate a probability distribution {P (µ)} which maximizes entropy, according
to the principle of maximum entropy inference (see section 4). These two ap-
proaches are similar, but not identical. �

We then suppose that the second law of Thermodynamics still holds for
Gibbs entropy. This is of course a stronger claim than the initial motivation
done in the framework of regular Statistical Mechanics (section 3.3), and it can
be considered controversial. The issue with this assumption has to do with
the Liouville theorem, which shows that Gibbs entropy remains constant under
Hamiltonian evolution (valid for both classical and quantum systems). There
are a number of proposed solutions to this; the statistical interpretation, coarse-
graining, projection, chaos, quantum collapse, expansion of the universe, non-
equilibrium initial condition, and canonical typicality [10]. Discussing each of
these will however bring us too far off course, so instead, we take this generalized
second law of Thermodynamics as an axiom.

Axiom 3.4 (Generalized second law of Thermodynamics). Consider
a closed system with a finite set of mutually exclusive microstates {µ}, and
their time-dependent probabilities {P (µ, t)}. When comparing the system
at some time t to any subsequent time t + ∆t, its state will develop such
that the Gibbs entropy on average will increase, or at least remain constant.

SG(t) ..= −k
∑
{µ}

P (µ, t) lnP (µ, t) (57)

⟨SG(t+∆t)− SG(t)⟩ ≥ 0 ∀ ∆t ≥ 0 (58)

Remark I. Note that in the case of an equal probability distribution over some
subset of {µ}, this generalized law is identical to the standard second law of
Thermodynamics (theorem 3.1 in section 3.3). �

Remark II. When we considered Boltzmann entropy in section 3.3 we assumed
that the system was large enough for the number of accessible microstates to
have a very sharp peak around some particular macrostate M . Here we relax
this condition and consider physical systems of any size. In particular we allow
the system to have a small number of degrees of freedom, and consequently,
fluctuations into states of lower entropy become much more likely. This means
that we can only consider the generalized second law to hold in a statistical
limit, i.e. we have to consider averages of entropy. �

Remark III. We will intentionally be somewhat vague about what kind of av-
erage for the entropy we are considering. We can take this average to mean
either the behaviour of some large ensemble of systems, the averaged behaviour
of one system over many cycles, or some notion from a more subjective atti-
tude towards the probable behaviour of the system (see section 3.4). Then this
generalized second law can be applied in a broader range of situations. �

23



3.7 Entropy in Quantum Mechanics
Considering the historical account, we should note that entropy in quantum
systems—the so-called von Neumann entropy—was introduced in 1927 by John
von Neumann [11], much earlier than to Shannon’s work [9] for instance, which
was published in 1948. However, here the topics are organized based on their
conceptual relation rather than their historical development.

Von Neumann originally derives his entropy formula from a specific thought
experiment using boxes and walls [12]. But here we will simply have a look at
the result and compare it to previous discussions, in particular section 3.5.

Let the state of some physical system, ρ̂, be associated with the finite Hilbert
space Hn (as defined in axiom 2.1), then von Neumann entropy, SN , has the
following definition.

SN (ρ̂) ..= −Tr
[
ρ̂ lnρ̂

]
(59)

This compact equation contains several details that we ought to consider.

Remark I. Considered in the general case, the natural logarithm of some opera-
tor Â is defined as the operator X̂ that solves eX̂ = Â. Solutions are not
guaranteed to exist, or there may be an infinite number of solutions. However,
according to axiom 2.1, ρ̂ has no negative eigenvalues, and then one can show
that there exists one, and only one, solution. (See the appendix, section A.3,
for further discussions about the logarithm of operators.) �

Remark II. Again in the general case, the trace of some operator Â is defined
as a sum over an arbitrarily chosen basis {|ϕi⟩} for Hn, where the trace is then
shown to be invariant under change of basis (see section A.4).

Tr
[
Â
] ..=

n∑
i=1
⟨ϕi|Âϕi⟩ (60)

�

Remark III. In the appendix, section A.5, we show that this von Neumann
entropy is invariant under unitary transformations of ρ̂.

SN (Û ρ̂ Û†) = SN (ρ̂) (61)
�

Remark IV. Von Neumann entropy is defined in terms of the natural logarithm.
This means that the unit for von Neumann entropy is different from Shanon
entropy by a factor ln 2. Note however that we used the natural logarithm for
Boltzmann entropy in equation (9), section 3.3. Ordinarily we use the natural
logarithm for entropy in physical systems, and the base 2 logarithm for entropy
in some abstract information. �

Often, when we want to evaluate SN (ρ̂) in some practical situation, we
rewrite ρ̂ on its diagonal form ρ̂ =

∑
i Pi |ϕi⟩⟨ϕi|, and take the trace in the

same eigenbasis. Then SN (ρ̂) will reduce to a sum over the eigenvalues.

SN (ρ̂) = −
∑

i

Pi lnPi (62)
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This is clearly very similar to the relation for Gibbs entropy in equation (56)
(except for the scaling factor k), and also Shannon entropy in equation (12)
(except for the logarithm basis which introduces a conversion factor ln 2). In this
light, we can understand von Neumann entropy as an extension into Quantum
Mechanics, and some of the work we did in the previous sections in order to
understand entropy (in particular section 3.5 and 3.6) applies here as well.
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4 The principle of maximum entropy inference

Here, we will consider ideas of Edwin T. Jaynes from his two
influential 1957 papers [7, 8]. In particular, we are interested in
the principle of maximum entropy inference, a.k.a. the maximum
entropy principle.

Jaynes’ original justification of the principle can be blamed for
not being very formal. Therefore we attempt to reinforce the idea
with some additional rigour (section 4.1).

We will then apply this principle in a concrete example, to
demonstrate its usefulness; deriving the canonical thermal state in
Quantum Mechanics (section 4.2), later to be used in section 6.

Jaynes’ argument begins with a reference to a tentative principle conceived by
Laplace. It is a useful rule—which applies to a limited situation—for assigning
probabilities when frequency measurements are not available, called the princi-
ple of insufficient reason.

Suppose we have some discrete and finite set of events {x}, such that they
are mutually exclusive and collectively exhaustive. Then, suppose that all events
are indistinguishable, except for how we label them. The principle of insuffi-
cient reason states that the events should each be assigned an equal probability,
P (x) = 1/n ∀ x (where n is the number of events). For example, consider a
die where all six sides are physically symmetric except for the label we have
assigned to each side. It is then appropriate to consider this a fair die, with
probability 1/6 for any outcome. The principle of maximum entropy inference
can then be seen as a generalization of Laplace’s thinking.

Suppose again that we have some system whose state can be characterized by
a probability distribution over a set of mutually exclusive states {x1, x2, · · ·, xn}
≡ {xi}. Additionally, we are given some function f of the members in {xi} to
which we know the statistical expectation value ⟨f(xi)⟩.

⟨f(xi)⟩ =
n∑

i = 1
P (xi) f(xi) (63)

Clearly, this restricts the allowed probability distributions {P (xi)}, but even
including the normalization condition

∑
i P (xi) = 1 we are still lacking another

(n−2) independent conditions to be able to determine all probabilities {P (xi)}.
We can however justify that there exists one probability distribution that is the
most appropriate given ⟨f(xi)⟩, by borrowing ideas from Information Theory.

We can consider the Shannon entropy (section 3.5) as a measure of the
amount of “uncertainty” there is in a probability distribution. Then we argue
that for each condition that is put on {P (xi)} the entropy (or uncertainty) of
the probability distribution should decrease. To guarantee that behaviour we
ought to select the allowed probability distribution that maximizes the entropy
after some condition is imposed.

Jaynes writes: “[ · · · ] in making inferences on the basis of partial information
we must use that probability distribution which has maximum entropy subject
to whatever is known. This is the only unbiased assignment that we can make;

26



to use any other would amount to an arbitrary assumption of information which
by hypothesis we do not have.”

To actually find the state that maximizes entropy under some constraints,
we will use the method of Lagrange multipliers—as we demonstrate in the next
section 4.2.

We should point out that the principle of maximum entropy inference is
based on ideas that make more sense in the subjective school of thought (see
section 3.4), where we consider probabilities as in some form derived from our
state of knowledge. And thus Jaynes’ argument receives some opposition for
not being sufficiently well grounded. In the following section 4.1 we present a
possible strategy for defining a mathematical notion of biased assumptions, and
create a tentative link between degrees of belief and experimental statistics.

4.1 Pursuit of a formal argument
It may be possible to produce a more formal argument to justify the principle of
maximum entropy inference. Note however that this argument is not completely
conclusive, and further examination will be necessary; in particular, the next
step would be to produce some concrete examples of the following discussion.

Consider a system whose state is modelled by a probability distribution
over a finite set of mutually exclusive states {xi}. Assume that we have some
constraint, C, we know to be true for the system. For instance, we could
imagine that we have computed the average energy, measured the temperature,
or obtained some other expectation value as described in equation (63).

Given a single constraint C, we have a range of compatible probability distri-
butions. Consider that instead of selecting the probability distribution {P (xi)}
that maximizes the entropy, we select some probability distribution {P ′(xi)}
that does not maximize the entropy. We may then be able to argue that there
exists some secondary constraint C ′ under which {P ′(xi)} is the probability
distribution with maximum entropy, while fulfilling both C and C ′. Therefore
{P ′(xi)} cannot be an acceptable choice, since we do not in fact know the second
constraint C ′ to be true. We say that C ′ represents a biased assumption.

Note that even though our true constraint C is generally in some sense mea-
surable, the character of the biased assumption C ′ can indeed be very artificial,
and for all practical purposes not measurable. Nevertheless, C ′ still represents
some knowledge about the system that we in fact cannot attach any truth-value
to. We are then able to argue that the only choice which remains is {P (xi)},
the probability distribution that maximizes entropy.

We can then use this construction to relate the distribution {P (xi)} to the
real-world statistics that is observed in experiments. If a system is modelled
using the principle of maximum entropy inference and the constraint C does
reproduce the expected statistics, we can conclude that our model is in fact
the most accurate we can produce with the available information. If, however,
the statistics are somehow more restricted than predicted by our model, we
can conclude that there exists some further constraint on our system that we
are unaware of. And in the opposite case, if the statistics are somehow less
restricted, our initial constraint C must have been too restrictive.
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4.2 Deriving the thermal quantum state
Here we will employ the principle of maximum entropy inference to motivate
and derive the following canonical thermal state from Quantum Mechanics.

ρ̂ = e−βĤ

Tr[ e−βĤ] (64)

We define a thermal state for a quantum system with Hamiltonian Ĥ, as one
where we have no information except about the average energy ⟨E⟩ of the state.

⟨E⟩ = Tr
[
ρ̂Ĥ
]

(65)

Note that an average energy does not by itself imply some unique state.17

Thus to be able to single out one particular choice of ρ̂, we include the additional
condition from the principle of maximum entropy inference—that ρ̂ maximizes
the von Neumann entropy, SN (ρ̂).

SN (ρ̂) ..= −Tr
[
ρ̂ ln ρ̂

]
(66)

Here we have clearly generalized our initial discussion in terms of classical prob-
abilities and Shannon entropy, to the quantum case using von Neumann en-
tropy (as Jaynes also does, see [8]), but the preceding conceptual discussion
remains valid.

Thus, our objective is to determine the state ρ̂, that maximizes von Neumann
entropy, subject to the constraints Tr[ρ̂] = 1 and Tr[Ĥρ̂] = ⟨E⟩. To this end,
we introduce two Lagrange multipliers, λ1 ̸= 0, λ2 ̸= 0, and we construct the
function f(ρ̂, λ1, λ2).

f(ρ̂, λ1, λ2) = −Tr
[
ρ̂ ln ρ̂

]
+ λ1

(
1− Tr

[
ρ̂
])

+ λ2

(
⟨E⟩ − Tr

[
ρ̂Ĥ
])

(67)

We begin by using the spectral theorem to rewrite our state ρ̂, and the energy
operator Ĥ on their diagonal form (see section 2), using some diagonalizing
basis {|ψi⟩}, and {|ϕi⟩}, with their eigenvalues {pi} and {Ei}, respectively.

ρ̂ =
∑

i

pi |ϕi⟩⟨ϕi| (68)

Ĥ =
∑

i

Ei |ψi⟩⟨ψi| (69)

Then Tr[ρ̂ ln ρ̂] becomes
∑

i pi ln pi, the trace over ρ̂ is simply
∑

i pi, and finding
the expression for Tr[ρ̂Ĥ] requires few steps.18

f(ρ̂, λ1, λ2) =

= −
∑

i

pi ln pi + λ1

(
1−

∑
i

pi

)
+ λ2

(
⟨E⟩ −

∑
i,j

pi Ej |⟨ψi|ϕj⟩|2
)

(70)

17There is plenty of freedom in our choice of ρ̂. For instance, we can consider states corre-
sponding to different probability distribution between the eigenvalues of the Hamiltonian Ĥ,
{P (Ei)}, and we can introduce entanglement in our state, without changing the distribution
between eigenvalues {P (Ei)}.

18Left to the reader as an exercise.
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We shall then take the derivatives of this expression with respect to λ1, λ2, and
every degree of freedom in ρ̂, then set all derivatives to zero. Since the term
that includes |⟨ψi|ϕj⟩|2 is the only one affected by infinitesimal rotations of the
state-basis {|ψi⟩}, if the derivative shall equal zero, the matrix elements ⟨ψi|ϕj⟩
must be indifferent (in the linear, first-order sense) to such a rotation. This is
only possible if the bases {|ψi⟩}, and {|ϕi⟩} coincide (up to an irrelevant phase
for each basis vector). Thus |⟨ψi|ϕj⟩|2 = δij , and we can conclude that ρ̂ is a
diagonal matrix in the eigenbasis of the Hamiltonian, {|ϕi⟩}.

f(p1, · · ·, pn, λ1, λ2) =

= −
∑

i

pi ln pi + λ1

(
1−

∑
i

pi

)
+ λ2

(
⟨E⟩ −

∑
i

piEi

)
(71)

The remaining degrees of freedom of f are the ones with respect to the proba-
bility eigenvalues {pi}, and of course λ1 and λ2.

∂f

∂pi
= −( ln pi + 1)− λ1 − λ2Ei = 0 ⇒ (72)

ln pi = −1− λ1 − λ2Ei ⇒ (73)

pi = e−λ2Ei

e1+λ1
; ∀ i (74)

Together with the trivial derivatives with respect to λ1 and λ2, we gather all
results in a system of equations.

pi = e−λ2Ei

e1+λ1
; ∀ i∑

i

pi = 1∑
i

piEi = ⟨E⟩

(75)

(76)

(77)

Since we know that the basis {|ϕi⟩} diagonalizes both ρ̂ and Ĥ we can rewrite
these equations in terms of ρ̂ and Ĥ.

ρ̂ = e−λ2Ĥ

e1+λ1

Tr
[
ρ̂
]

= 1
Tr
[
ρ̂Ĥ
]

= ⟨E⟩

(78)

(79)
(80)

In equation (78) we have two unknowns, λ1 and λ2, that are uniquely specified
by the two conditions in equation (79) and (80). To find an expression for the
denominator e1+λ1 , we take the trace of equation (78) and set it equal to one.

1 = 1
e1+λ1

Tr
[

e−λ2Ĥ
]

⇒ 1
e1+λ1

= 1
Tr[ e−λ2Ĥ] =.. 1

Z
(81)

Thus, the denominator e1+λ1 ∈ (0,∞) in equation (78) can be seen as a normal-
ization of the numerator. We name this normalization the partition function,
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and denote it as Z ..= Tr[ e−λ2Ĥ]. ρ̂ = e−λ2Ĥ

Tr[ e−λ2Ĥ]
Tr
[
ρ̂Ĥ
]

= ⟨E⟩

(82)

(83)

Then λ2 is a constant that is fixed by ⟨E⟩, and a dimensional analysis gives that
it has the physical dimensions of the standard reciprocal temperature β(⟨E⟩) =
1/kT (⟨E⟩). Thus we can call λ2 ≡ β, and we arrive at our thermal state for ρ̂.

ρ̂ = e−βĤ

Tr[ e−βĤ] (84)

We conclude that the thermal state is a diagonal matrix in the eigenbasis of the
Hamiltonian, where the probability eigenvalues {pi} correspond to the classical
canonical distribution (when treated as a function of their energies, pi(Ei)).

Finally, we should mention one technicality. The method of Lagrangian
multipliers can only find candidate points for extremum values. In this case,
the ρ̂ we found really is a maximum of the von Neumann entropy, however a
rigorous proof of this will be arduous, and we shall here refrain from that.

30



5 Landauer’s principle in Classical Physics

In 1961, Rolf Landauer published the paper “Irreversibility and
Heat Generation in the Computing Process” [1]. It opens with
a discussion about a particle at rest in a double well potential.
Imagine that your task is to apply forces to the particle, such as to
move the particle to the left potential minima. However, you are
not privy to the information about whether the particle resides to
the left or right to begin with.

Under classical physics, this is an impossible task with forces
alone19, and your only option is to let some kinetic energy dissipate
as heat to a surrounding reservoir, making this process physically
irreversible. Landauer then presents a number of other examples
and argues that this is a general principle. That “logical irre-
versibility20 is associated with physical irreversibility and requires
a minimal heat generation”—Landauer’s principle.

But it is problematic to provide specific examples to prove a
universal claim. In this section, we will look closer at what Lan-
dauer argued, and construct a general argument to demonstrate
the result that he predicted, but in a more universal setting.

5.1 Introduction
Even though Landauer published his seminal paper in 1961, until today papers
are continuously being published on Landauer’s principle. Despite this, the
presently available literature can be quite opaque, and occasionally conflicting to
the point that some authors appear to be in direct opposition to each other—see
for instance Maroney [13] vs. Ladyman et al. [14], Bennett’s discussion [15], or
Sagawa [16], who claims that “the logically irreversible erasure can be performed
in a thermodynamically reversible manner in the quasi-static limit”, seemingly
contradictory to Landauer’s original conclusion [1].

There are surely several explanations for the ambiguous situation. We can
note that there exists no consensual mathematical framework, and many au-
thors choose to discuss the ideas from the point of view of some particular
physical system using boxes, pistons, point particles, constrained Hamiltonians,
constrained probability distribution, etc., before claiming that the result should
apply in general. See for instance the following papers, [1,14–19]. In this context,
it may be difficult to pinpoint where the disagreement occurs, when conflicting
attitudes appears.

19This is a consequence of Liouville’s theorem for Hamiltonian Mechanics, stating that for
any physical system obeying Hamiltonian Mechanics, the divergence of the velocity field in
its phase is zero, if only conservative forces are allowed. The same argument is put forth by
Landauer [1], but expressed in somewhat different words.

20Simply stated, the described process is considered logically irreversible since we cannot
determine the initial state from the final state.
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Here we intend to construct an argument in favour of Landauer’s original
conclusion, without making any assumptions about the physical systems in-
volved. This type of argument is believed to be useful for exposing some causes
of disagreements and bringing the literature closer to consensus. We also intend
for this argument to be suitable as an introductory remark for the reader un-
familiar with Landauer’s principle. In order to tailor the approach to this end,
the following two notions will be guiding the discussion.

Notion I (A general physical system). In order to keep the discussion
relatable to the majority of other publications we will, as mentioned, consider
a physical system on general terms, and then conduct an argument contingent
on the second law of thermodynamics. �

Notion II (Following the original set-up). There is a tradeoff between
how general we will be in our initial assumptions, and how much effort is re-
quired to follow the argument. Since literature already exists with the purpose
to generalize Landauer’s principle beyond its original scope—here, we will es-
sentially stick to the original set-up. We shall point out to the reader when we
make some needless limitations and cite references to the appropriate general-
ized analysis. Thus, the treatment in this section is meant as a minimal kernel,
to which further arguments (such as the one in section 6) can be attached. �

Also, we will base the argument on semi-classical physics in the following
sense. We assume classical physics—just like Landauer originally did—but with
the additional assumption that it is possible to find a finite set of mutually exclu-
sive microstates that is sufficient to model our system. This assumption is based
on considerations from Quantum Mechanics where a system can be described as
a superposition of a countable set of pure states, typically eigenstates of some
Hamiltonian [10].21 This model aligns with Orwen J. E. Maroney’s paper from
2009 [20].

In the course of our discussion, we will expose a complication (section 5.6),
which is believed to never have been previously stated in an explicit manner,
likely because it is conveniently hidden in most considerations based on specific
systems. We then present a solution to the complication (section 5.7), which is
also briefly mentioned by Maroney [20], but not as a solution to an identified
problem.

21Two remarks are in order. First, if we are forced to use a continuous phase space for the
system, we can view the countability as originating from a coarse-graining procedure. Second,
if the state space is infinite, we can assume that there exists some cut-off energy Emax, for
which the set of states with lower energy is finite, and where the probability of occupation
for any state energy higher than Emax is so low that truncating our state space will be an
acceptable approximation.
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5.2 Stating Landauer’s principle
There are several formulations of Landauer’s principle in the literature. Collo-
quially, it can be expressed as “erasure of one bit of information requires a net
increase in total entropy of at least k ln 2, or in terms of heat, kT ln 2”. But
as we shall discuss in section 7, there is a danger that such colloquial phrasing
seduces us to apply the principle where it does not belong. Therefore, we shall
consider the following, more well defined, proposition.

Proposition 5.1 (Landauer’s principle). Any logically irreversible and
deterministic physical manipulation of information that is entropy-restoring
(as defined in section 5.7), and designed to decrease the Shannon entropy of
the encoded information, must be accompanied by an increase in the Gibbs
entropy ∆S (section 3.6) in the total closed system.

⟨∆S⟩ ≥ −k ln 2∆H where ∆H < 0 (85)

If the system can be described as having a thermal reservoir of temperature
T , the increase of Gibbs entropy can be realized as an increase of heat ∆Q.

⟨∆Q⟩ ≥ −k T ln 2∆H where ∆H < 0 (86)

This increase in entropy makes this kind of information manipulation a
physically irreversible process.

We have several remarks to consider about this proposition.

Remark I. Some authors define ∆H with a positive sign when the entropy of
the information is decreasing. But in this thesis, we will be consistently following
the convention that increasing quantities have positive signs, and decreasing
quantities have negative signs. �

Remark II. Note that ∆H is evaluated as Shannon entropy, in units of bits
(see equation (12), section 3.5). �

Remark III. Landauer’s principle, as stated in proposition 5.1, is discussed in
terms of classical systems, and therefore only applies to classical physics. �

Remark IV. We have limited proposition 5.1 to the case of logically determin-
istic manipulations of data. This condition is relaxed by Maroney [20], where
also random processes are considered. Note that this limitation is quite tol-
erable, since most computation devices deal with processes that are logically
deterministic. �

Remark V. Demanding that the process is entropy-restoring is a requirement
not found in the literature cited in this thesis. �

Remark VI. We label any process physically irreversible if the total entropy of
a closed system is increased as a consequence of the process, since according to
the second law of Thermodynamics, you cannot reverse such a process. More
comprehensive discussions are carried out for instance by Ladyman et al. [14],
and Sagawa [16]. �
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Strictly speaking, we will not provide a proof of Landauer’s principle (propo-
sition 5.1), instead we provide a phenomenological argument for it. In section
6, we will be looking at quantum systems for which more formal rigour can be
afforded. Also, to keep the argument more minimal, we will limit the discussion
to the case ∆H = −1 bit, and discuss extensions later (section 5.11).

5.3 Defining quantities and concepts

5.3.1 Logical states
We begin by establishing how to represent information. Following the original
paper by Landauer [1], we restrict ourselves to information in a binary represen-
tation, thus any unit of information takes values from an alphabet set with two
members, {0, 1}. For a more general treatment with alphabet sets of arbitrary
(finite) size, the reader is referred to Owen Maroney’s paper from 2009, [20].

Consider a variable x that takes values from the alphabet set {0, 1} with
some probability for each. The probabilities for x to assume either of the values
{0, 1} are denoted as P (x = 0) and P (x = 1). Taken together, these form a “logical
state”. 22

(x ∈ {0, 1}, {P (x = 0), P (x = 1)}) (87)

This notation somewhat bulky, so let us be precise about the meaning of some
abbreviated notation, which will be frequently occurring.

(x, {P (0), P (1)}) ⇔ (x ∈ {0, 1}, {P (x = 0), P (x = 1)}) (88)

x = 0 ⇔ (x, {P (0) = 1, P (1) = 0}) (89)

x = 1 ⇔ (x, {P (0) = 0, P (1) = 1}) (90)

[proposition including x] ∀ x ∈ {0, 1}
⇔

The proposition holds when x is replaced by any member of {0, 1}.
(91)

5.3.2 Logical operations
To a logical state (x, {P (0), P (1)}) we can apply “logical operations”. Here we
will limit ourselves to deterministic logical operations, in the sense that any ini-
tial distinct logical state, x = 0 or x = 1, uniquely determines a distinct result,
x = 0 or x = 1. Under these restrictions, we can describe any logical operation
with a truth table, and for an alphabet set with two members there will only be
four possible logical operations. For discussions also including operations that
are non-deterministic, or random, see [20].

22The name logical state is chosen since it is in agreement with the majority of publications.
See for instance [14,20].
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Identity operation Not operation

Input Output Input Output
0 0 0 1
1 1 1 0

Reset-to-zero operation Reset-to-one operation

Input Output Input Output
0 0 0 1
1 0 1 1

When “erasure of information” is mentioned in the context of Landauer’s
principle, one is referring to the behaviour of the last two operations; where the
logical output state is certain, irrespective of the initial logical state, and thus
entropy—or information—is decreased when comparing input to output.

Note that we consider logical operations which takes only one logical state as
input, and produces one logical state as output. Maroney considers situations
not subject to this limitation, [20].

5.3.3 The information-bearing system, S

We then select some appropriate free parameter of a physical system to encode
the logical state. With “parameter” we mean some measurable property, typi-
cally a single degree of freedom of the system; such as the energy of an atom,
the current through a wire, or the position of a particle, but it can also consti-
tute some partition in a multidimensional phase space. This parameter is the
assumed to be “free” in the sense that is independent of any other degrees of
freedom. Thus the free parameter can be treated as a physical system in itself,
separate from its environment, and we will hereafter refer to it as S, or the
information-bearing system.

5.3.4 Physically encoding logical states in S

As mentioned in the introduction (section 5.1), S should be such that it can be
fully described by a finite set of mutually exclusive microstates, {µ}. We then
select some subset of microstates, {µ0} ∈ {µ}, as encoding for the logical state
x = 0 and some other subset, {µ1} ∈ {µ}, to encode for x = 1. These subsets
are chosen to be non-intersecting and collectively exhaustive in the following
sense.

{µ0} ∩ {µ1} = ∅ ; {µ0} ∪ {µ1} = {µ} (92)
Given some method of measuring whether the information-bearing system S has
a microstate in {µ0} or {µ1}, this construct ensures that a distinct logical state,
x = 0 or x = 1, is always well defined if we make a measurement on S.

However in the most general situation—where we typically lack full infor-
mation about the state of the system23—we would describe any state of S as

23In section 4 we discuss the implication of lacking information, related to the principle of
maximum entropy inference.
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a probability distribution over the complete set of microstates {µ}, and since
the subsets encoding for x = 0 and x = 1 are non-intersecting and collectively
exhaustive, according to equation (92), we can take sums over the sets {µ0} and
{µ1} to find the probabilities for each distinct logical state, P (0) and P (1).

P (0) =
∑
{µ0}

P(µ0) ; P (1) =
∑
{µ1}

P(µ1) (93)

Under the conditions of equation (92), and since the probability distribution
over {µ} is normalized to unity, the same holds for P (0) and P (1).

P (1) + P (0) = 1 (94)

5.3.5 The reservoir, R

So far we have introduced the information-bearing system S, and its finite set
of accessible microstates {µ}. However, we shall not consider S in complete
isolation. In addition to the information-bearing system, there will be a large
number of secondary degrees of freedom, termed the reservoir, and denoted
by R. This reservoir is assumed to be large enough in order to remain at
constant temperature even if small quantities of energy or entropy is exchanged
with S.

5.3.6 The closed system, C

Taken together, S and R form a closed system, denoted by C, and referred
to, simply, as the closed system. Note that the second law of thermodynamics
(axiom 3.4) applies to C.

5.3.7 Logical processes, PS

The free status of the information-bearing system S can then be momentarily
suspended, when a physical interaction between S and R is introduced. The
purpose of such interactions is to execute logical operations (see section 5.3.2)
on the logical state of S. We will call this type of physical interaction a “logical
process” and we label it PS —where the subscript is a reminder that the purpose
of PS is to manipulate the logical state of S.

Note that the term process is here reserved for the physical domain, and the
term operation refers to the logical domain (see section 5.3.2).

5.3.8 Logical reset processes, PS
0

Landauer’s principle concerns the consequences of a particular kind of logical
process—one which executes a reset operation; by setting the logical state to
some predetermined standard state, regardless of the initial logical state. Here
we let the standard state to be x = 0, thus the logical operation we consider is
reset-to-zero (see tables in section 5.3.2), but the argument is of course invariant
under this choice. We will call any such type of physical process a “logical reset
process”, and we denote it with PS

0.
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5.3.9 Terminology of other authors
Several authors, e.g. [14, 15, 20], use the terms “information-bearing degrees of
freedom” or IBDF, and “non-information-bearing degrees of freedom” or NIBDF,
to refer to S and R respectively. Here, partially in order to ease our subsequent
transition into fully quantum-mechanical systems, in section 6, we will favour
the terminology in terms of S and R.

5.4 Example of an information-bearing system S
Before entering into the abstract discussion of a general physical system, it may
be comforting to have some concrete ideas to relate to the abstract.

Perhaps the most minimal example of an information-bearing system S, is
a classical particle in a one-dimensional potential well of infinite height. This
example is also discussed by Landauer in his original paper [1]. Our intention is
to use the position of the particle to encode our logical state (x, P (0), P (1)). We
label the position of the particle q, and let the infinite well begin and end at ±L.

Then, divide q ∈ [−L,L] into tiny intervals to create our set of mutually
exclusive microstates {µ}.24 For each state in {µ}, if the tiny interval is to the
left we will put it into {µ0}, and associate it with the logical state x = 0. Vice
versa, if the tiny interval is to the right it will be a member of {µ1} associated
with x = 1.

Figure 3: Encoding of a logical state in a
information-bearing system S—a classical particle in a

one-dimensional potential well. The interval q ∈ [−L, 0] is
divided into a set of microstates {µ0}, corresponding to

the logical state x = 0, and the interval q ∈ [0, L] is divided
into the microstates {µ1}, corresponding to the logical

state x = 1. Spontaneous (Brownian) motion is assumed to
be negligible.

In this construction, a logical process PS can for instance be created by applying
forces (which give energy to S) and friction (which dissipate energy into R)
to the particle, and thus we can manipulate the logical state of S. Note that
spontaneous (Brownian) motion can be assumed to be negligible.

24One may argue that space is not quantized in this manner, in which case we can consider
this an example using coarse-grained entropy. See [5] for further discussions about the coarse-
graining of phase spaces.
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5.5 Additive entropies
We now intend to construct an argument for Landauer’s principle. We want
to argue for equation (85) in proposition 5.1, i.e. the more general case where
the increase in entropy is not necessarily in terms of heat. In equation (85)
the average change in entropy ⟨∆S⟩, refers to the entire closed system C, or
⟨∆SC⟩. Since entropy is additive for independent states (see section 3.5.4), we
can consider the entropies of each subsystem (S and R) separately, and add
them up.

SC = SS + SR ⇒ ∆SC = ∆SS +∆SR (95)
What we are actually interested in, is the change in entropy. Therefore we

will only define the entropy of each subsystem (SS and SR) up to an additive
constant.

5.6 Complication from undefined entropies
We begin looking for an expression of SS —since we have some idea what hap-
pens to the state of this system when the logical reset process PS

0 (as defined
in section 5.3.8) is applied. The entropy in S is simply the entropy over the
microstates {µ}.

SS = S({P (µ)}) (96)
Perhaps we can argue that we should be given some initial probability distri-
bution over all microstates {P (µ)}, in which case we can calculate the initial
values of SS , before PS

0 has been applied.
We can then apply the composition law—axiom 3.3 in section 3.5.3—to

separate the entropy of the logical state, from the entropy within each of the
two logical states, as seen in the following relation reproduced by Maroney [20].25

SS = S(P (0), P (1)) + P (0)S({P (µ0)}|x = 0) + P (1)S({P (µ1)}|x = 1) (97)

Here we have employed conditional entropies (see section A.9) to calculate the
remaining entropy when a logical state is determined. These entropies will
appear frequently, thus it is appropriate to define a more compact notation.

Definition 5.1 (Remaining entropy). The remaining entropy when
some particular logical state has been determined, x = 0 or x = 1, is
calculated from conditional entropy (section A.9).

S({P (µx)}|x) (98)

For any logical state with P (x) > 0, this corresponds to normalizing the
probability distribution over {µx} such that {P (µx)} sums to 1, and then
calculating the entropy. We define a shorthand notation for this.

S(µ0) ..= S({P (µ0)}|x = 0) ; S(µ1) ..= S({P (µ1)}|x = 1) (99)

S(µx) ..= S({P (µx)}|x) (100)

25See equation (107) on page 14, where the corresponding formula is expressed as an entropy
difference, and on a form to account for a larger alphabet set.
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With this notation we can rewrite equation (97).

SS = S(P (0), P (1)) + P (0)S(µ0) + P (1)S(µ1) (101)

After PS
0 is applied, the probabilities for the logical state P (0) and P (1) are

given, making the first term in equation (101) well defined. Since the logical
operation is reset-to-zero we know the probabilities P (0) = 1 and P (1) = 0,
which also sets the last term to zero. However, the entropy over {µ0} in the
second term of equation (101) is not well defined. This is because there are many
conceivable logical processes that recreate the large-scale behaviour of reset-to-
zero, but are not physically equivalent because they create different probability
distributions over the small-scale microstates {µx} within a logical state. Put
differently, the remaining entropy (from definition 5.1) is not determined.

We can therefore conclude that our assumptions so far are not sufficiently
restrictive to relate the entropy of the physical state, to the entropy of the
information in our logical state.

5.7 Logical processes PS must be entropy-restoring
There are of course different attitudes one can take to the complication of un-
defined entropies, described in the previous section 5.6.

Approach I. We could demand that we use an information-bearing system
which only has two mutually exclusive microstates |{µ}| = 2, one for each
logical state. Then there would be no further small-scale structure to account
for, i.e the only entropy that exists is in the logical states. Clearly, this has the
considerable disadvantage that Landauer’s principle would not apply to most
physical systems currently used for information processing. �

Approach II. We could demand that, even though we allow numerous mi-
crostates, any logical process PS can only map onto a single microstate in each
of the sets for the logical states, {µ0} and {µ1}. Then the entropy from {P (µ0)}
and {P (µ1)} would be zero after PS . However, this is still a rather limiting con-
dition which excludes a great number of computation devices. �

We can take the idea from approach II, but relax it further. In fact, it is not
necessary to demand remaining entropy S(µx) to be zero, as long as the entropy
assumes some constant value on average, we will be fine. Thus we define an
“entropy-restoring” logical process, loosely stated, as having some fixed spread
(on average) for the probability distribution over each of the sets of microstates,
{µ0} and {µ1}. The following definition 5.2 expresses this idea formally.

Definition 5.2 (Entropy-restoring process). After some physical pro-
cess PS is applied to an information-bearing system S. If the remaining en-
tropy, S(µx) (see definition 5.1), is distributed around some process-specific
average value SRES, for each logical state (x = 0 and x = 1), then this
process PS is defined as entropy-restoring.

⟨S(µx)⟩ = SRES ∀ x ∈ {0, 1} where P (x) > 0 (102)

after PS is applied

39



Remark I. In this thesis we have used an alphabet set with two members,
{0, 1}, but this definition will of course extend to alphabet sets of any (finite)
cardinality. �

Remark II. We will leave some ambiguity about what the average is taken over.
But, for example, the average can be produced over an ensemble of several
systems, or from a time series. But at its most general, the average can be
viewed as a gentle reminder that any one particular realization is not bound to
satisfy these relations. �

Definition 5.2 is a reasonable condition to put on our logical processes since
any non-entropy-restoring process, for which the average remaining entropy
⟨S(µx)⟩ can stray to any value, is practically problematic for a number of reasons.
For instance, if the entropy is ever increasing, we may not be able to guarantee
that some particular microstates, say in {µ0}, which may have some coupling
to microstates of {µ1} can be kept at a low probability of being populated, thus
introducing errors. Secondly, since the entropy over any finite set of events is
bounded both from above and below, entropies in some ensemble must have a
very exotic behaviour if we want it to avoid converging on some average value
as the ensemble grows.

However, examining equation (101), we can see that there is a way to further
relax the conditions, briefly discussed by Maroney [20] as uniform computing.

Definition 5.3 (Uniform computing). After some physical process PS

is applied to an information-bearing system S. If the entropy over the in-
dividual logical states, weighted by their probabilities, is a process specific
constant, SUNI , then the process is said to conform to uniform computing.
With an alphabet set of two members, {0, 1}, the condition takes the fol-
lowing form.

P (0)S(µ0) + P (1)S(µ1) = SUNI (103)

Here we will stick with our condition of entropy-restoring processes. First,
it will be more versatile by considering averages. Second, the reset process we
want to examine (section 5.3.8) always has P (0) = 1 and P (1) = 0, removing
the added freedom in definition 5.3.

We note that is not entirely clear what it means from a physical point of
view, to design a logical process that operates according to uniform comput-
ing—where the remaining entropy (definition 5.1) depends on the probabilities
for logical states. This question is also mentioned in the conclusions section
when discussing further work (section 8.1.2).

5.8 Calculating a Landauer bound
We can now return to where we got stuck in the calculation (section 5.6), but
we now assume that our logical reset process PS

0 is entropy-restoring according
to the definition 5.2.

We will further assume that the initial state of S, is prepared by some
process under the same condition of being entropy-restoring. This is reasonable
since similar processes often sequentially act on information-bearing systems in
computation devices.
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5.8.1 Entropy in S

With begin by taking an average of SS in equation (101). Note that we consider
some specific logical state, i.e. ⟨P (x)⟩ = P (x) ∀ x ∈ {0, 1}.

⟨SS⟩ = S(P (0), P (1)) + P (0) ⟨S(µ0)⟩+ P (1) ⟨S(µ1)⟩ (104)

Whether or not this is the entropy before or after PS
0, the state is assumed

to prepared by an entropy-restoring process. Thus we know that ⟨S(µx)⟩ =
SRES ∀ x ∈ {0, 1}.

⟨SS⟩ = S(P (0), P (1)) + (P (0) + P (1))SRES (105)

As we argued in section 5.3.4, equation (94), the probabilities over the alphabet
set sum to 1.

⟨SS⟩ = S(P (0), P (1)) + SRES (106)
As argued in section 5.5, when calculating entropy differences, we only need to
define our entropies up to an additive constant, and since SRES is a constant
associated with any logical process we can redefine ⟨SS⟩ by subtracting SRES.

⟨SS⟩ = S(P (0), P (1)) (107)

The probabilities P (0) and P (1), are the probabilities of the logical states we
use to encode information. Thus it makes sense to express this entropy in terms
of bits, used in Shannon entropy (section 3.5), and in the process, we decouple
it from Boltzmann’s constant k which is included in S.

⟨SS⟩ = k ln 2 H(P (0), P (1)) (108)

Thus, by imposing the arguably reasonable constraint that our logical pro-
cesses are entropy-restoring (definition 5.2) we have been able to make the av-
erage entropy in S dependent only on the probabilities for the logical states,
P (x = 0) and P (x = 1). This is exactly what we need if we want to express the
change of the entropy in the physical system in terms of change of entropy in
information.

5.8.2 Change of entropy in S

We now want to design some physical reset-to-zero process PS
0, with the purpose

to reset any arbitrary logical state to our standard logical state x = 0.
But we need to be explicit about what an arbitrary logical state is. More

precisely, we mean is that the process PS
0 has no access to information about

the logical state it is going to reset. In this situation, the principle of maximum
entropy inference (as discussed in section 4) asserts that we should model S
with a state which maximizes the entropy of S, under available constraints.
Here, our only constraint is that the state is produced by an entropy-restoring
process, and therefore the expression derived for ⟨SS⟩ in from equation (108)
applies here. Let us say that the process PS

0 starts at some time t, thus initial
entropy is evaluated at time t.

⟨SS(t)⟩ = k ln 2H(t) = max
P (0),P (1)

k ln 2H(P (0), P (1)) (109)
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The maximum value is assumed for equal probabilities of each logical state
P (0) = P (1) = 1/2. (We calculate H separately to be able to compare the
change of Shannon entropy in the information, to the change of Gibbs entropy
in S.)

H(t) = −
(

1
2

log2
1
2

+ 1
2

log2
1
2

)
= 1 bit ⇒ (110)

⟨SS(t)⟩ = k ln 2 (111)

Assuming that PS
0 requires the time ∆t > 0 to execute, we express the final

entropy as SS(t +∆t). Since the purpose of PS
0 is to set the logical state to

x = 0, we know that P (0) = 1 and P (1) = 0.

H(t+∆t) = −(1 log21 + 0 log20) = 0 bits ⇒ (112)

⟨SS(t+∆t)⟩ = 0 (113)

We then calculate ∆H (the change in Shannon entropy), along with ∆SS (the
change of entropy in S), when a reset-to-zero process PS

0 (with no prior infor-
mation about the initial logical state) has executed.

∆H = H(t+∆t)−H(t) = −1 bit

⟨∆SS⟩ = ⟨SS(t+∆t)⟩ − ⟨SS(t)⟩ = −k ln 2

(114)

(115)

5.8.3 The Landauer bound, change of entropy in R

Since entropy is additive (see section 5.5), the total change in entropy when PS
0

is applied, is just the change of entropies in S and R.

⟨∆SC⟩ = ⟨∆SS⟩+ ⟨∆SR⟩ (116)

From axiom 3.4, the generalized second law of Thermodynamics, we know
that the average change in entropy cannot be negative for a closed system,
i.e. ⟨∆SC⟩ ≥ 0.

⟨∆SS⟩+ ⟨∆SR⟩ ≥ 0 (117)

Since ⟨∆SS⟩ = −k ln 2, we can conclude that ⟨∆SR⟩ is positive with the lower
bound k ln 2. Thus PS

0 necessarily increases the entropy in R.

⟨∆SR⟩ ≥ k ln 2 when ∆H = −1 bit (118)

We will label this kind of relation a “Landauer bound”, since it sets a lower
bound on the entropy increase in the reservoir R when a logical process is
executing.26

26In section 6, when we target the fully quantum mechanical system we will solely focus
on finding a similar Landauer bound to equation (118), but derived with more mathematical
rigour, for an arbitrary change in information ∆H < 0, and not contingent on the second law
of thermodynamics.
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5.8.4 Remarks about the Landauer bound
The result so far cannot be considered very controversial. We have imposed
a condition on our physical processes (definition 5.2) which forces the entropy
in a state to be determined from the logical state of S. We then decreased the
entropy in the logical state by 1 bit, and thus found a bound on entropy increase
in the reservoir R, as expressed by equation (118).

At this point, we have not shown that there is any implication of physical
irreversibility, as Landauer’s principle (proposition 5.1) claims. Put differently,
we have not shown that the entropy of the closed system C must strictly increase,
instead, it seems like we just moved some entropy from S to R.

A likely cause for authors claiming that Landauer’s principle is not valid is
that they conduct an argument which takes us no longer than to this point, see
for instance [20]. But to argue for the physical irreversibility we need to consider
one final point (see section 5.9).

5.9 Inferring physical irreversibility in C
Consider the identical set-up as before but with one significant change. We will
use an “enlightened” logical process PS

0 ′ which also resets to zero, but does carry
information about the logical state of S; i.e. there exist some correlation between
the logical state of S (x = 0 or x = 1), and some secondary physical system
that PS

0 ′ can use to determine how to interact with S.27 Otherwise, everything
else is the same as with our previous “ignorant” process PS

0, in particular, we
still demand that PS

0 ′ should be entropy-restoring. Under these conditions,
new physical mechanisms are made available to PS

0 ′, since it can act differently
depending on the logical state, and we can treat each logical state separately.

If the logical state is x = 0, the process PS
0 ′ simply does nothing, which

clearly creates no change of entropy in either S or R, making it a physically
reversible process (the entropy of C is unchanged).

If P (0) = 1 ⇒ ⟨∆SS⟩ = 0 ; ⟨∆SR⟩ = 0 (119)

⇒

⟨∆SC⟩ = 0 (120)

If the logical state is x = 1, the process PS
0 ′ can carry out a logical not oper-

ation (see section 5.3.2), in which the entropy of the logical state—as calculated
from equation (108)—is unchanged. Thus the second law of Thermodynamics
implies no lower bound on the entropy increase in R, and again the process is
physically reversible.

If P (1) = 1 ⇒ ⟨∆SS⟩ = 0 ⇒ ⟨∆SR⟩ ≥ 0 (121)

⇒

⟨∆SC⟩ ≥ 0 (122)

We now take a step back to compare the two situations—the former igno-
rant process PS

0, versus the latter enlightened process PS
0 ′. When we consider

27Note that the S constructed such that whether the logical state is x = 0 or x = 1 is a
measurable quality, and each logical state is assumed to be stable over time.
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the effect on the microstates {µ} of the information-bearing system S, the two
situations are identical. Before either process is applied, the logical state was
either x = 0 or x = 1, and after the process, the logical state is x = 0. Also,
each process is entropy-restoring.28 But still, we have found conflicting changes
of entropy in S.

For PS
0 : ⟨∆SS⟩ = −k ln 2 (123)

For PS
0 ′ : ⟨∆SS⟩ = 0 (124)

This contradictory situation can be resolved by attributing the former decrease
of entropy—not to some decrease of the space of states for S—but as a decrease
in the uncertainty from the point of view of the process PS

0.
We then consider the changes of entropy in R.

For PS
0 : ⟨∆SR⟩ ≥ k ln 2 (125)

For PS
0 ′ : ⟨∆SR⟩ ≥ 0 (126)

Since the processes are different from a physical point of view there is no neces-
sary condition that the effects on R should be the same. Thus, for the process
PS

0, the increase of entropy in R can, and should, be considered as enlarging the
available space of states. Because if it was not, from the point of view of the
process PS

0, the second law of thermodynamics would not hold.
We can view this increase in the entropy of R as originating from the ig-

norance of the process PS
0, which is not able to operate at the efficiency of the

enlightened process PS
0 ′ as far as entropy production is concerned.

When we then ask if the ignorant logical process PS
0 (for which ∆H = −1 bit)

is physically reversible from the perspective of the closed system C itself. It would
be incorrect to include the reduction of uncertainty of PS

0 when we evaluate some
physical change in entropy of C (related to the size of the state space), and we
therefore set ⟨∆SS⟩ = 0.

⟨∆SC⟩ = ⟨∆SS⟩+ ⟨∆SR⟩ ⇒ (127)

⟨∆SC⟩ ≥ k ln 2 when ∆H = −1 bit (128)

Thus we have shown that the change in entropy in the closed system C is
strictly positive, and the process PS

0 must represent a physically irreversible
process, as suggested in proposition 5.1.

Another way to think about it is the following. From the perspective of
some physical system O, which is correlated with the initial logical state (x = 0
or x = 1), there is no change in entropy of S (i.e. ⟨∆SS⟩ = 0), and this is the
correct perspective to take, since reversing a reset-to-zero process should entail
a recovery of the initial logical state.

Claude Shannon makes an independent remark in his seminal paper [9]
(page 1), which is surprisingly relevant here. “The system [here, the process PS

0]
must be designed to operate for each possible selection, not just the one which
will actually be chosen since this is unknown at the time of design.”

28The remaining entropy, for a determined logical state, is on average SRES .
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5.9.1 Subtleties and controversies
In order to link the uncontroversial Landauer bound from section 5.8.3 to the
claim of physical irreversibility made by Landauer’s principle (proposition 5.1),
we need some argument connecting the two. But we should note that the inter-
linking argument made in section 5.9 is quite subtle, and not entirely robust if
one assumes some other point of view towards entropy in physical systems.

However, it is not recommended to examine the argument in complete iso-
lation. Instead, this discussion for a general information-bearing system should
be considered as a backdrop to a number of publications which reproduces the
result when analyzing Landauer’s principle in terms of constrained or specific
physical systems—among others see [1, 14–19].

We can speculate that it is the delicate nature of the argument (for a general
information-bearing system) which have kept others from engaging in it, and we
note that the author Owen Maroney (whose argument start out very similar to
this one) does not include any arguments of this kind [20]. Generally, we cannot
claim that the conclusion of physical irreversibility is backed up by consensus
in the literature, but the hope is that arguments and discussions in general
terms—such as the one in section 5.9—can expose the correct treatment and
work in favour of consensus building.

5.10 A remark about noise
Physical systems are extremely difficult to isolate from random noise. Therefore
it is a clear idealization to assume that the parameter which was used to encode
logical states, should be free (see section 5.3.3). In reality, we can assume that
there exist some effects which will widen locally concentrated probability distri-
butions with time, thus making the entropy in S increase over time. However,
this effect will only increase the magnitude of the Landauer bound on ⟨∆SR⟩
from equation (118). Thus ⟨∆SC⟩ ≥ k ln 2 remains a lower bound, and adding
noise will not change our result.

5.11 Generalizing to information reset of arbitrary size
We have constructed an argument for Landauer’s principle in the case of reset-
ting 1 bit of data, i.e. ∆H = −1 (see equation (128)). But we can easily extend
our analysis to any integer value for ∆H.

Take some number of physical parameters {Si} and consider our them all
together as our information-bearing system. Since entropy is additive, the Lan-
dauer bound in equation (118) will be multiplied by the number of subsystems
|{Si}|, and this number will carry over to equation (128).

⟨∆SC⟩ ≥ −k ln 2∆H for −∆H ∈ N1 (129)

To generalize to real values, see the 2009 paper by Maroney [20] where an
argument is introduced using alphabet sets of any finite cardinality.
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5.12 Attempting to break Landauer’s principle

5.12.1 Measuring the logical state
We have assumed that PS

0 has no prior information about the logical state, but
an immediate concern is that we have not prohibited measurements of the logical
state. One might think that we can have a measuring process, PS

0 ′′, the reset
procedure by performing a measurement of the logical state, in order to then
operate at the efficiency of PS

0 ′ from section 5.9. But in order for PS
0 ′′ to make

use of the measurement outcome, a “copy” of the logical state must be encoded
somewhere else, and made accessible to PS

0 ′′. Then, after S has been reset, we
still have to reset the copy, only pushing the problem of resetting a logical state
ahead of ourselves.

This points to a fundamental impracticality of any reset process with prior
information, such as PS

0 ′ (section 5.9). In any kind of practical device for in-
formation manipulation there would be other processes which may affect the
logical state of S, thus rendering the information in PS

0 ′ useless, and a logical
process such as PS

0 ′ can at most be used once.

5.12.2 Entropy sinks
When reading literature on Landauer’s principle, one often comes across the
requirement that some system must operate in a cyclical fashion, returning to
the initial state periodically. Indeed, that is also a cornerstone of Classical
Thermodynamics (section 3.2). The rationale behind such demands is to avoid
introducing entropy sinks into the argument, and reaching some incorrect con-
clusion.

For example, we could imagine a naïve attempt to improve our measuring
process PS

0 ′′ (from section 5.12.1) by supplying a large register for the reset
process, such that measurement results, for all practical purposes, never have
to be reset. In that case, we introduce an entropy sink in our argument, where
entropy seems to behave differently because we have moved it to some place
of the system where it is hard to see, and there is no longer any resetting of
information going on; we only move it from one subsystem to another.

The way we detect potential entropy sinks is to ask ourselves: “What mod-
ifications do we have to introduce in order to make the scheme return to its
initial state?”.

Indeed it is also possible to regard any process that is not entropy-restoring
(see definition 5.2 in section 5.7) as introducing a finite entropy sink, allowing
Landauer’s principle to be violated as long as there is room to hide additional
entropy. Requiring that any process has to be entropy-restoring makes the
process more cyclical, and prohibits using the microstates {µ0} and {µ1} as
entropy sinks.

5.13 Comparison to Maroney’s 2009 paper
Since the initial setup in this section closely follows that of Owen J. E. Maroney
in his 2009 paper [20] it is appropriate to compare the final result to his, and
we will point out some differences.

46



As previously mentioned, Maroney’s treatment is initially more general. Two
alphabets for logical states are introduced, for input and output, and they both
have some arbitrary finite cardinality (in contrast to this treatment where a
single alphabet has only two members). Also, logical operations are not limited
to only deterministic operations.

Even though the initial setup in this thesis is contained as a special case
of Maroney’s treatment, the arguments deviate from each other and we reach
contrasting conclusions. Here we will identify which points in Maroney’s treat-
ment appear inaccurate and incomplete from the point of view of the current
treatment.

In order to deal with the complication from undefined entropies (see section
5.6), Maroney attributes the small-scale entropy of some logical state, i.e. S(µx),
to entropy in the “non-information-bearing degrees of freedom”. In his paper
[20], see the equation (111) and the subsequent paragraph. This is clearly a
problematic approach since the entropy S(µx) resides in our information-bearing
system S (as defined in section 5.3.3), and not the reservoir R, a.k.a. the non-
information-bearing degrees of freedom (see section 5.3.5 and 5.3.9).

We also note that Maroney does not show that the total entropy of the
closed system C increases, since he does not engage in any argument like the
one in section 5.9. This means that Maroney only argues for what we here
termed a Landauer bound (section 5.8), and does not address whether physical
irreversibility follows (section 5.9). Of course, the absence of an argument is not
a counter-argument. Thus the current treatment can be taken as an extension
of Maroney’s argument, such that the conclusion—when looking at a general
physical system—is the same conclusion as originally put forth by Landauer [1].
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6 A Landauer bound in Quantum Mechanics

The claim made by Cabello et al. (see problem II in section 1,
and section 7) is backed up by the assertion that Landauer’s prin-
ciple is “considered valid in the quantum domain” [2], and a paper
by David Reeb and Michael M. Wolf is cited, [21]. Here we take
a look at the assertion, and begin to generalize Landauer’s prin-
ciple to Quantum Mechanics—without relying on the second law
of Thermodynamics—in an easy accessible reconstruction of the
most relevant parts of two papers by Reeb and Wolf, authored in
2013 [22] and 2014 [21].

Suppose we have some quantum system S, whose entropy we
want to lower. We are free to design any interaction Hamiltonian,
but we have limited information about the state of the reservoir R,
which S will interact with. In fact, we only know some average
energy of R. Then, what are the limitations in such an interaction?

Compared to section 5, we will not introduce the structure
of logical states, logical operations and logical processes, instead,
we will look at the bare state of the quantum system. Therefore
we will not here make any claims about Landauer’s principle, but
instead, we derive a version of a Landauer bound (see section 5.8.3).

6.1 Premises
We begin by defining some premises to base the argument upon. The number of
premises is increased by one compared to the formulation by Reeb and Wolf [21],
but they correspond to an identical set-up.

Premise 6.1 (System and model). A closed system C is modelled
quantum-mechanically, and it is divided into two sub-systems, S and R.
S is our information-bearing system, and R is a reservoir.

Premise 6.2 (Density operators). S and R are both described by finite-
dimensional density operators ρ̂S and ρ̂R associated with Hilbert spaces of
dimensions dS and dR respectively (see section 2 axiom 2.1).

Premise 6.3 (Initial state of R). The reservoir R is initially, at time t0,
in the canonical thermal state (see section 4.2). Let ĤR be the Hamiltonian
of the reservoir, and let β ∈ [−∞,∞] be its reciprocal temperature.

ρ̂R = e−βĤR

Tr[ e−βĤR]
(130)

Premise 6.4 (Initial state of C). The entire closed system C is initially,
at time t0, in a state that has no correlations between S and R.

ρ̂C = ρ̂S ×fρ̂R (131)

Premise 6.5 (Unitary evolution). At time t0, the two systems couple
through an interaction Hamiltonian ĤSR, and evolve unitarily according to
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some Hamiltonian, ĤC , on the entire closed system, until the time t0 +∆t.
We denote final states with primes, such as ρ̂ ′

C.

ĤC = ĤS ×f1R + 1S ×fĤR + ĤSR (132)

Û(t) ..= e−iĤCt (133)

ρ̂ ′
C

..= Û(∆t) ρ̂C Û
†(∆t) ; ∆t > 0 (134)

From this construction, we should point out a few things.

Remark I. We make no specific assumptions about the initial state of the
information-bearing system S, thus ρ̂S can have any degree of mixedness; carry-
ing any amount of von Neumann entropy. We do not impose any requirements
on the systems Hamiltonian ĤS either. �

Remark II. Just as in section 5, the information-bearing system S is initially
assumed to be independent of the reservoir R, until some interaction begins.
This means that there are no correlations between S and R, which is equivalent
to modelling the combined system C with a product state (see premise 6.4). �

6.2 Defining quantities
Our goal is now to relate changes in von Neumann entropy (section 3.7) of S
to changes in the average entropy or energy in R. We therefore carry on with
further definitions of some useful quantities.

As defined, ρ̂S is the initial state and ρ̂ ′
S is the final state, of S. Then let

⟨∆SS⟩ be the average change in the entropy carried by S.29

⟨∆SS⟩ ..= SN (ρ̂ ′
S)− SN (ρ̂S) ⇒ (135)

⟨∆SS⟩ = Tr
[
ρ̂S ln ρ̂S − ρ̂ ′

S ln ρ̂ ′
S

]
(136)

A state of a subsystem (such as S) is found by tracing over other subsystems
(here R) on the density operator of the entire closed system (here modelled with
ρ̂C). Thus we can find the final state of S by tracing over ρ̂ ′

C.

ρ̂ ′
S = TrR[ρ̂ ′

C] (137)

Then, let ⟨∆SR⟩ be the average change in entropy of R.30

⟨∆SR⟩ ..= SN (ρ̂ ′
R)− SN (ρ̂R) ⇒ (138)

⟨∆SR⟩ = Tr
[
ρ̂R ln ρ̂R − ρ̂ ′

R ln ρ̂ ′
R

]
(139)

Again, the final state of a subsystem, such as R, is found by tracing over the
closed system.

ρ̂ ′
R

..= TrS[ρ̂ ′
C] (140)

29Thus positive values correspond to an increase, and negative values correspond to a
decrease, in entropy. Note that this definition is chosen with the opposite sign compared to
Reeb and Wolf [21].

30Just as with ⟨∆SS⟩, positive values correspond to an increase in entropy.
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To quantify the heat, we will assume that all energy in R will be in the
form of heat. Reed and Wolf state that this is justified since the “energy is
not ’ordered’ since R is an initially thermal reservoir, which may absorb energy
from S during the process and spread the energy over many states” [21]. And
we choose to define the sign of heat ⟨∆QR⟩ such that heat transferred into R
corresponds a positive value.

⟨∆QR⟩ ..= ⟨HR(t+∆t)⟩ − ⟨HR(t)⟩ = Tr
[
ρ̂ ′

RH
]
− Tr

[
ρ̂RH

]
⇒ (141)

⟨∆QR⟩ = Tr
[
(ρ̂ ′

R − ρ̂R)H
]

(142)

6.2.1 Remark on averages
Whether we view the classical probability distribution that a density operator
can carry (see section 3.7) to mean a statistical distribution in an ensemble, or
our best possible description of the system under known conditions, it is clear
that some specific interaction between S and R may not respect calculated
changes, such as ⟨∆SS⟩ or ⟨∆QR⟩.31 It is only in some statistical limit that we
expect these relations to hold, and we shall emphasize this point with brackets
around our quantities.

6.3 A Landauer bound in terms of entropy
We consider the von Neumann entropies in S and R. With the definitions of
⟨∆SS⟩ and ⟨∆SR⟩ from section 6.2, we will show that when entropy changes,
the net entropy change will non-negative.

Theorem 6.1 (Landauer entropic bound in finite-dimensional state
space). When entropy in either sub-system S or R changes, the net change
is always non-negative.

⟨∆SS⟩+ ⟨∆SR⟩ = I(ρ̂ ′
S : ρ̂ ′

R) ≥ 0 (143)

Equality holds if and only if the final state is a product state ρ̂ ′
C = ρ̂ ′

S ×fρ̂ ′
R.

Here, I(ρ̂ ′
S : ρ̂ ′

R) is the quantum-mechanical generalization of mutual informa-
tion, discussed in section A.10. Note that equality, i.e. I(ρ̂ ′

S : ρ̂ ′
R) = 0, does not

necessarily require both ⟨∆SS⟩ and ⟨∆SR⟩ to be zero, we can in principle still
have entropy transactions between S and R, as long as our final state ρ̂ ′

C is a
product state.
Proof (Theorem 6.1). We will use the additive property of von Neumann
entropy for product states, SN (ρ̂1×fρ̂2) = SN (ρ̂1) + SN (ρ̂2) (section 3.5.4), the
invariance of entropy under unitary transformations, SN (ρ̂) = SN (Ûρ̂ Û†) (sec-
tion A.5), and the non negative property of mutual information, I(ρ̂1 : ρ̂2) ≥ 0
(section A.10).

⟨∆SS⟩+ ⟨∆SR⟩ = SN (ρ̂ ′
S)− SN (ρ̂S) + SN (ρ̂ ′

R)− SN (ρ̂R) = (144)

31See section 4.1 for an argument on how our best possible description can be connected
with statistical outcomes.
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= SN (ρ̂ ′
S) + SN (ρ̂ ′

R)− SN (ρ̂C) = (145)

= SN (ρ̂ ′
S) + SN (ρ̂ ′

R)− SN (Û ρ̂CÛ
†) = (146)

= SN (ρ̂ ′
S) + SN (ρ̂ ′

R)− SN (ρ̂ ′
C) ≡ I(ρ̂ ′

S : ρ̂ ′
R) ≥ 0 (147)

�

6.4 A Landauer bound in terms of heat
Here we repeat a similar analysis as in section 6.3, but we compare changes in
entropy of S with changes in heat of R. As discussed in section 6.2 we take heat
to mean the total change in energy of the state.

Theorem 6.2 (Landauer heat bound in finite-dimensional state
space). When entropy in system S changes, the change in heat in R will
respond such that their sum is always non-negative.

⟨∆SS⟩+ β⟨∆QR⟩ = I(ρ̂ ′
S : ρ̂ ′

R) + S(ρ̂ ′
R∥ ρ̂R) ≥ 0 (148)

Equality holds if and only if ⟨∆SS⟩ = 0 and ⟨∆QR⟩ = 0.

Here, I(ρ̂ ′
S : ρ̂ ′

R) is mutual information (section A.10), and S(ρ̂ ′
R∥ρ̂R) is the so

called relative entropy, (section A.6).

Proof (Theorem 6.2). We intend to rewrite ⟨∆SR⟩, as defined in equation
(139), in terms of change in energy. Our intention is to expose each step, and
allow the reader to follow with relative comfort.

⟨∆SR⟩ = Tr
[
ρ̂R ln ρ̂R − ρ̂ ′

R ln ρ̂ ′
R

]
= (149)

= Tr
[
ρ̂R ln e−βĤ

Tr[ e−βĤ]

]
− Tr

[
ρ̂ ′

R ln ρ̂ ′
R

]
= (150)

= Tr
[
ρ̂R

(
− βĤ − ln

(
Tr[ e−βĤ]

))]
− Tr

[
ρ̂ ′

R ln ρ̂ ′
R

]
= (151)

= −β Tr
[
ρ̂RĤ

]
− Tr

[
ρ̂R ln

(
Tr[ e−βĤ]

)]
− Tr

[
ρ̂ ′

R ln ρ̂ ′
R

]
= (152)

= −β Tr
[
ρ̂RĤ

]
− ln

(
Tr[ e−βĤ]

)
Tr
[
ρ̂R
]
− Tr

[
ρ̂ ′

R ln ρ̂ ′
R

]
= (153)

= −β Tr
[
ρ̂RĤ

]
− ln

(
Tr[ e−βĤ]

)
− Tr

[
ρ̂ ′

R ln ρ̂ ′
R

]
(154)

We then add and subtract a term, β Tr[ρ̂ ′
RĤ].

⟨∆SR⟩ =

= β Tr
[
ρ̂ ′

RĤ
]
−β Tr

[
ρ̂RĤ

]
−ln

(
Tr[e−βĤ]

)
−β Tr

[
ρ̂ ′

RĤ
]
−Tr

[
ρ̂ ′

R lnρ̂ ′
R

]
=

(155)

= β Tr
[
(ρ̂ ′

R−ρ̂R)Ĥ
]
−Tr

[
ρ̂ ′

R

]
ln
(
Tr[e−βĤ]

)
−β Tr

[
ρ̂ ′

RĤ
]
−Tr

[
ρ̂ ′

R lnρ̂ ′
R

]
= (156)
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= β Tr
[
(ρ̂ ′

R−ρ̂R)Ĥ
]
−Tr

[
ρ̂ ′

Rln
(
Tr[e−βĤ]

)]
−β Tr

[
ρ̂ ′

R ln eĤ
]
−Tr

[
ρ̂ ′

R lnρ̂ ′
R

]
= (157)

= β Tr
[
(ρ̂ ′

R−ρ̂R)Ĥ
]
+Tr

[
ρ̂ ′

Rln 1
Tr[e−βĤ]

]
+Tr

[
ρ̂ ′

R ln e−βĤ
]
−Tr

[
ρ̂ ′

R lnρ̂ ′
R

]
= (158)

= β Tr
[
(ρ̂ ′

R−ρ̂R)Ĥ
]

+ Tr
[
ρ̂ ′

R ln e−βĤ

Tr[ e−βĤ]

]
− Tr

[
ρ̂ ′

R ln ρ̂ ′
R

]
= (159)

= β Tr
[
(ρ̂ ′

R − ρ̂R)Ĥ
]

+ Tr
[
ρ̂ ′

R ln ρ̂R
]
− Tr

[
ρ̂ ′

R ln ρ̂ ′
R

]
= (160)

= β Tr
[
(ρ̂ ′

R − ρ̂R)Ĥ
]
− Tr

[
ρ̂ ′

R(ln ρ̂ ′
R − ln ρ̂R)

]
(161)

Here, we can identify the first term as the average change in heat ⟨∆QR⟩ (mul-
tiplied by reciprocal temperature β) according to equation (142). The second
term is, by definition, the so-called relative entropy S(ρ̂ ′

R∥ρ̂R), discussed in sec-
tion A.6. We can then rewrite ⟨∆SS⟩ in terms of heat, and insert this result
into equation (143), from theorem 6.1.

⟨∆SR⟩ = β⟨∆QR⟩ − S(ρ̂ ′
R∥ρ̂R) ⇒ (162)

⟨∆SS⟩+ β⟨∆QR⟩ = I(ρ̂ ′
S : ρ̂ ′

R) + S(ρ̂ ′
R∥ρ̂R) ≥ 0 (163)

In the last step we have used that both the mutual information I(ρ̂ ′
S : ρ̂ ′

R), and
the relative entropy S(ρ̂ ′

R∥ρ̂R), are non-negative (sections A.10 and A.6). Thus
we have proven equation (148) in theorem 6.2, and it remains to prove the
conditions for equality, as stated in the same theorem.

For equation (163) to be an equality we need both of the non-negative quan-
tities I(ρ̂ ′

S : ρ̂ ′
R) and S(ρ̂ ′

R∥ρ̂R) to be zero, and they both impose their individual
restrictions. The mutual information is zero if and only if the final state is a
product state ρ̂ ′

C = ρ̂ ′
S ×fρ̂ ′

R, meaning there are no correlations between the sub-
systems. And for the relative entropy to be zero, we must require ρ̂ ′

R = ρ̂R. In
conclusion, we have the following two conditions.

ρ̂C = ρ̂S ×fρ̂R and ρ̂ ′
C = ρ̂ ′

S ×fρ̂R (164)

Lemma A.4 (see section A.7 in the appendix) then lets us know that the eigenval-
ues of a product state can be written as a simple multiplication of the eigenvalues
from the sub-systems. Let the eigenvalues of ρ̂S be {si}, the eigenvalues of ρ̂ ′

S
be {s′

i}, and the eigenvalues of ρ̂R be {ri}.

Eig[ρ̂C] = {sirj} ; Eig[ρ̂ ′
C] = {s′

irj} (165)

Since ρ̂C and ρ̂ ′
C are Hermitian matrices related by a unitary transform, accord-

ing to lemma A.5 (section A.8 of the appendix) we know that they must both
have the same eigenvalues.

s′
irj = sirj (166)

Since ρ̂R has trace 1 (axiom 2.1), we know that there must exist at least one
eigenvalue that is larger than zero. This means that for some value(s) of j we
can divide equation (166) by rj .

s′
i = si (167)
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From lemma A.5 again, we can conclude that since ρ̂S and ρ̂ ′
S are Hermitian,

and that they have the same eigenvalues, they must be related by a unitary
transform V .

ρ̂ ′
S = V̂ ρ̂S V̂

† (168)

This implies that the entropy of S does not change, ⟨∆SS⟩ = 0, and our initial
conditions from equation (164) require ρ̂R to be unchanged, thus its entropy or
heat cannot change either, ⟨∆QR⟩ = 0.

The converse—showing that for ⟨∆SS⟩ = 0 and ⟨∆QR⟩ = 0, will imply
that I(ρ̂ ′

S : ρ̂ ′
R) = 0 and S(ρ̂ ′

R∥ ρ̂R) = 0—is a trivial consequence derived from
equation (148) since both mutual information and relative entropy are non-
negative quantities. �

We further point out that for most non-trivial processes there is some energy
or entropy exchange (i.e. ∆S > 0 or ∆Q > 0), and then the Landauer heat
bound (theorem 6.2) is a strict inequality. We could then ask if there exists some
non-zero and increasing function, f(∆S), such that we can rewrite equation
(148) from ⟨∆SS⟩+ β⟨∆QR⟩ > 0 to something like the following relation.

⟨∆SS⟩+ β⟨∆QR⟩ ≥ f(∆S) (169)

In section 6.6 we shall return to this question.

6.5 Purifying S in finite-dimensional state space
Here we construct a lemma that will be useful for a deeper understanding of
the purification process. The general idea is that there is a class of mixed states
where all the eigenvalues in the density operator are larger than zero (e.g. a
maximally mixed state). We can then gain some insight into the purification
process by looking at the behaviour of the smallest eigenvalue (corresponding to
the least likely pure state). We will show that there exist a bound on how small
we can make this eigenvalue when interacting with a thermal reservoir with a
finite state space.

Lemma 6.1 (Bound for lowering the smallest pure state probabil-
ity). Let pmin(ρ̂) denote the smallest eigenvalue of any density operator ρ̂,
and let E↓

R and E↑
R be the lowest and highest energy eigenvalues of the

reservoir Hamiltonian ĤR. Then, for the system S, this bounded Hamilto-
nian ĤR makes it impossible to transform pmin(ρ̂S) > 0 to zero, according
to the following bound.

pmin(ρ̂ ′
S) ≥ e−|β|(E↑

R−E↓
R) pmin(ρ̂S) ≥ e−2|β| ∥ĤR∥ pmin(ρ̂S) (170)

Remark I. From this, we can conclude that a reservoir with a finite state
space permits “purification” only if the Hamiltonian ĤR permits energies that
are much larger than the typical energy kT .

Proof (Lemma 6.1). Using the spectral theorem (section A.1) we can express
the density operator ρ̂ ′

S in its diagonal form (see section 2). Then, let pmin(ρ̂ ′
S)
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be its smallest eigenvalue, and let |s0⟩ be the corresponding normalized eigen-
state. Also, let {|ri⟩} be an orthonormal basis for the reservoir R, and we define
the abbreviated notation |s0⟩×f|ri⟩ =.. |s0,ri⟩.

pmin(ρ̂ ′
S) = ⟨s0|ρ̂ ′

S |s0⟩ = ⟨s0|TrR [ρ̂ ′
C] |s0⟩ =

dR∑
i=1
⟨s0,ri|ρ̂ ′

C|s0,ri⟩ (171)

Every matrix element ⟨s0,ri|ρ̂ ′
C|s0,ri⟩ ∀ i has to be bigger or equal to the small-

est eigenvalue of that operator ρ̂ ′
C, thus we rewrite our previous result as an

inequality.

pmin(ρ̂ ′
S) =

dR∑
i=1
⟨s0,ri|ρ̂ ′

C|s0,ri⟩ ≥
dR∑
i=1

pmin(ρ̂ ′
C) = pmin(Ûρ̂C Û

†) dR (172)

We then use lemma A.5 (eigenvalues are unaffected by unitary transforms) on
this expression, and in the last step below we use lemma A.4 (eigenvalues of a
product operator are the products of the eigenvalues).

pmin(ρ̂ ′
S) ≥ pmin(ρ̂C) dR = pmin(ρ̂S ×fρ̂R) dR = pmin(ρ̂S) pmin(ρ̂R) dR (173)

Since we have an explicit expression for ρ̂R —defined as the canonical ther-
mal state in equation (130)—we will be able to find an explicit expression for
pmin(ρ̂R) in terms of the lowest and highest energy eigenvalues of the Hamilto-
nian ĤR, E↓

R and E↑
R respectively. Let us first assume that the temperature is

positive, β > 0.

pmin(ρ̂R)
∣∣∣
β > 0

= e−βE↑
R

Tr[ e−βĤR]
≥ e−βE↑

R

e−βE↓
R dR

=

= e−β(E↑
R −E↓

R)

dR
≥ e−2β∥ĤR∥

dR

(174)

In the last step, we have used that the operator norm of the Hamiltonian ∥ĤR∥
is either |E↑

R| or |E↓
R|, depending on which is larger, i.e. ∥ĤR∥ = sup{|E↓

R|, |E
↑
R|}.

Then, for negative temperatures, β < 0 we will just get a minus-sign in the ex-
ponent.

pmin(ρ̂R)
∣∣∣
β < 0

= e−βE↓
R

Tr[ e−βĤR]
≥ e−βE↓

R

e−βE↑
R dR

=

= eβ(E↑
R −E↓

R)

dR
≥ e2β∥ĤR∥

dR

(175)

Inserting this back into equation (173).

pmin(ρ̂ ′
S) ≥ e−|β|(E↑

R−E↓
R) pmin(ρ̂S) ≥ e−2|β| ∥ĤR∥ pmin(ρ̂S) (176)

�

6.6 Finite-size corrections to the Landauer heat bound
From theorem 6.2 we have learned that the total increase the entropy and heat
vanish if and only if both ⟨∆SS⟩ and ⟨∆QR⟩ are zero—which is a trivial and pas-
sive case. For the more interesting case—when entropy and heat are exchanged
between S and R—Reeb and Wolf present a lower bound on the total change
that takes the change in entropy ⟨∆SS⟩ as its argument [21]. However, only for
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decreasing entropies, ⟨∆SS⟩ < 0, is the bound tight32. Since in this thesis we
are primarily interested in that case (decreasing the uncertainty in our state),
we will here restrict the following analysis to the case ⟨∆SS⟩ < 0.

Note that we will now give up the ability to make exact statements about
entropy production, which we had in theorem 6.2. Instead, we are looking for
a general statement which holds no matter what interaction Hamiltonian, and
final state ρ̂ ′

C, we have.
To begin with, we define two functions that will be utilized in our theorem.

Definition 6.1 (Binary entropies). Consider two probability distribu-
tions, each over some binary choice (i.e. sets of two mutually exclusive
events), P ..= {p, 1 − p | 0 ≤ p ≤ 1} and Q ..= {q, 1 − q | 0 ≤ q ≤ 1}. We
define the binary entropy H2, and binary relative entropy D2 as follows.

H2(p) ..= S(P ) = p ln 1
p

+ (1− p) ln 1
1− p

D2(p, q) ..= DKL(P∥Q) = p ln p
q

+ (1− p) ln 1− p
1− q

(177)

(178)

See section A.6 for further discussions about relative entropy. With this, we are
prepared to state our theorem.

Theorem 6.3 (Finite size correction of Landauer heat bound).
Given a reservoir, R, described by a finite-dimensional density operator
ρ̂R associated with a Hilbert space of dimension dR ≥ 2. If the entropy of
the information-bearing system S is reduced, i.e. ⟨∆SS⟩ < 0, the Landauer
heat bound (theorem 6.2), is tightly bounded from below by a monotonically
increasing and convex function, M .

⟨∆SS⟩+ β ⟨∆QR⟩ ≥MdR(|⟨∆SS⟩|) when ⟨∆SS⟩ < 0 (179)

The function M takes dR —the dimensionality for the reservoir’s Hilbert
space—as a parameter, and it is defined as a minimization of binary relative
entropy, D2(p,q) (see definition 6.1), in a bounded region Ω in p-q space.

Ω ..= 0 ≤ p, q ≤ dR − 1
dR

(180)

Admissible points in the p-q space are also subject to a second restriction
by a transcendental equation, in effect making the minimization problem
one-dimensional.

MdR(∆S) ..=
= Min

Ω

{
D2(p, q)

∣∣∣H2(p)−H2(q) + (p− q) ln(dR − 1) = ∆S
} (181)

32The bound is tight in the sense that there exist some circumstances under which the
inequality becomes an equality.
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Note that we must require dR ≥ 2 since with dR = 1 we get the trivial case
that ⟨∆QR⟩ = ⟨∆SS⟩ = 0.

The foundation for our proof of theorem 6.3 will be an auxiliary result about
a mathematical property of relative entropy—from the same authors, Reeb and
Wolf—expressed in corollary 6.1 below. [22]

Corollary 6.1. Consider of two density operators ρ̂ and σ̂, both associated with
Hilbert spaces Hd of finite dimensionality d. Their relative entropy S(σ̂∥ρ̂) is
bounded from below by a monotonically increasing and convex function M that
is defined as the minimization problem of binary relative entropy, D2(p,q), in a
bounded region Ω in p-q space. See definition 6.1 for the functions H2 and D2.

S(σ̂∥ρ̂) ≥Md(∆S)

where
∆SN

..= SN (σ̂)− SN (ρ̂) ; d ..= dim ρ̂ = dim σ̂

Ω ..= 0 ≤ p, q ≤ dR − 1
dR

Md(∆S) ..=Min
Ω

{
D2(p, q)

∣∣∣H2(p)−H2(q) + (p−q) ln(d−1) = ∆S
}

(182)

�

Clearly, corollary 6.1 looks familiar, and a lot of the heavy lifting is indeed
accomplished by Reeb and Wolf in [22].

Proof (Theorem 6.3). Starting with equation (148) of the previous theorem
6.2, we have an exact expression of the bound in terms of the final mutual
information between the sub-systems I(ρ̂ ′

S : ρ̂ ′
R) and the relative entropy in R

between the initial and final state S(ρ̂ ′
R∥ ρ̂R).

⟨∆SS⟩+ β⟨∆QR⟩ = I(ρ̂ ′
S : ρ̂ ′

R) + S(ρ̂ ′
R∥ ρ̂R) (183)

Then, from equation (143) of theorem 6.1, we find that mutual information can
be rewritten in terms of entropy changes, I(ρ̂ ′

S : ρ̂ ′
R) = ⟨∆SS⟩+ ⟨∆SR⟩, and we

can thus rewrite equation (183).

β⟨∆QR⟩ − ⟨∆SR⟩ = S(ρ̂ ′
R∥ ρ̂R) (184)

From our definitions, see equation (138), we have ⟨∆SR⟩ ..= SN (ρ̂ ′
R) − SN (ρ̂R),

and we can then use the result from [22], equation (182).

β⟨∆QR⟩ − ⟨∆SR⟩ ≥ MdR(⟨∆SR⟩) (185)

Again we turn to equation (143) of theorem 6.1, but now we make use of the
inequality, ⟨∆SS⟩+ ⟨∆SR⟩ ≥ 0 ⇒ ⟨∆SS⟩ ≥ −⟨∆SR⟩, and since M is a mono-
tonically increasing function—as shown in [22]—we can make the right-hand
side (potentially) smaller, and the left-hand side (potentially) bigger, using this
(non strict) inequality.

β⟨∆QR⟩+ ⟨∆SS⟩ ≥ MdR(−⟨∆SS⟩) (186)
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Since we assumed ⟨∆SS⟩ < 0 from the start, we have found the inequality of
equation (179), theorem 6.3.

We have now not explicitly shown that M is, in fact, convex, monotonically
increasing, and tight as a bound (in the sense that for any ⟨∆SS⟩ < 0 there
exist a ρ̂ ′

C such that equality is assumed). Some of these discussions get quite
involved, and we will not present them as proofs here, instead, the reader is
referred to [22]. For convexity, see section 4.2, for monotonicity section 2.1
(remark 5) and for the tightness, section 2.1 (remark 3). �

6.7 Comparing the Landauer heat bound with finite cor-
rections to the classical counterpart

To gain some intuition about how the function M (theorem 6.3) behaves for
different values of ⟨∆SS⟩ < 0, we can plot the reservoir’s change in heat β ⟨∆QR⟩
against the change in the entropy of our information bearing system, ⟨∆SS⟩ < 0.
Note that we have used von Neumann entropy in this section, and it does not
include Boltzmann’s constant k, while the Gibbs entropy that we used in section
5 does. This implies that if we express ⟨∆SS⟩ in units of bits, it will have the
same units as ∆H in equation (118) (see section 5.8.3).

Generally, it is safe to assume that the dimensionality of the reservoir R is
larger than the information bearing system S. We therefore begin by considering
a qubit, dS = 2, which we reset by reservoirs of a larger number of dimensions,
dR = 32 and dR = 1024.

Figure 4: The change in heat in the reservoir, R, when the
entropy of a qubit S (dS = 2) is lowered. The dotted line is
the classical linear bound (second law of Thermodynamics),
and the solid line include the correction from the function
M (theorem 6.3). In the left figure, the reservoir has
dimensionality dR = 32, and in the right dR = 1024.

Clearly, as we increase the dimensionality of the reservoir, the behaviour
becomes more and more like the linear bound supported by of the second law
of Thermodynamics (section 3).

For a more complete picture, we compare this to the limiting case when S
and R have the same number of dimensions. First, we let both the information
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bearing system and the reservoir be qubits, dS = dR = 2. Then, we let both
have a larger number of dimensions, dS = dR = 1024.

Figure 5: The change in heat in the reservoir, R, when the
entropy of an information bearing system S is lowered.

The dotted line is the classical linear bound (second law of
Thermodynamics), and the solid line include the correction
from the function M (theorem 6.3). In the left figure both

systems (S and R) are qubits, dS = dR = 2, and in the
right both systems have larger dimensionality,

dS = dR = 1024.

Clearly, if S and R have the same dimensionality, the process becomes much
less efficient, with the largest deviation from linear behaviour if we want to take
S from a maximally mixed state to a pure state.
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7 Objection to “Thermodynamical costs of some
interpretations of quantum theory”

The initial motivation to consider Landauer’s principle was its
application in a 2016 paper by Adán Cabello, Mile Gu, Otfried
Gühne, Jan-Åke Larsson, and Karoline Wiesner, titled “Thermo-
dynamical costs of some interpretations of quantum theory” [2].
The paper enters into an ambitious enterprise, to attach an ex-
perimentally testable prediction to the choice of interpretation for
Quantum Mechanics.

In June 2017 (after this work was initiated) a paper by Ca-
rina E. A. Prunkl and Christopher G. Timpson was published [23],
where problems with the argument by Cabello et al. was pointed
out. However, this latter publication was not discovered before its
key point was independently reproduced. Even though both objec-
tions are in agreement, what is emphasized here diverges somewhat
from Prunkl and Timpson.

In this section, we discuss the set-up and argument of Cabello
et al. and reproduce their result (section 7.1). Then we point out
what the problem of their argument is and offer a replacement
argument (section 7.2). Our emphasis will be somewhat different
from Prunkl and Timpson, and we deviate from their analysis in
one respect (section 7.2.1). Note that the reader familiar with the
details of the analysis by Cabello et al. may prefer to skip ahead
to section 7.2.

7.1 Reproducing the result from Cabello et al.

7.1.1 Classification of interpretations
The approach by Cabello et al. is to consider a thought experiment, from which
seemingly unphysical consequence is derived. They begin by dividing the cur-
rent set of described interpretations into two classes—type I and II—on the
basis of their respective attitude towards the origin of probabilities in Quan-
tum Mechanics, as defined below (citing [2] with some clarifying modification
of language).

Definition 7.1 (Type I). Type I interpretations consider quantum prob-
abilities for measurement outcomes as determined by “intrinsic” (observer-
independent) properties of the observed system.

Definition 7.2 (Type II). Type II interpretations consider quantum prob-
abilities for measurement outcomes as describing the experiences that the
observer has of the observed system, unrelated to “intrinsic” properties of
the system.
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A number of popular interpretations are then classified in terms of these
two definitions. According to Cabello et al., the following interpretations are
classified as type I: Einstein’s [24], Bohmian mechanics [25,26], many worlds [27,
28], Ballentine’s [29], modal interpretations [30,31], Bell’s beables [32], collapse
theories [33,34], and Spekkens’ [35].

In type II interpretations we have: Copenhagen [36, 37], Wheeler’s [38],
relational [39], Zeilinger’s [40], Fuchs and Peres’s no interpretation [41], and
QBism [42,43].33

We note that Prunkl and Timpson argue that classifying interpretations
based on the definition of type I and II is not completely unambiguous [23].
We shall however not discuss properties of different interpretations, but instead,
focus on the technical aspects of the argument by Cabello et al.

7.1.2 Premises and the considered quantum system
The system we shall consider is comprised of three parts: A single qubit encoded
in some physical system with two energy levels, such as a spin-half particle.
Second, a measurement device for measuring the spin of the qubit-system along
some arbitrary axis. Finally, we have some generator of randomness.

A sequence of measurements is then carried out on the qubit-system, where
the measurement direction is determined by the randomness generator, and
drawn from a finite set. This set of available measurement directions is chosen
such that possible measurement outcomes will be isotropically distributed in the
x-z plane. Three premises are then assumed to hold.

Premise 7.1. Which measurement is performed on the qubit-system can be
chosen randomly and independently of the system. �

Premise 7.2. The qubit-system has limited memory. �

Premise 7.3. Landauer’s principle holds. �

The eventual intention is to look at the behaviour of this setup when the
number of measurement directions grows.

7.1.3 Mathematical structure
The central idea of the paper is that the outcomes from measurements on the
qubit-system can be modelled as a stochastic input-output process, generated by
a so-called epsilon-transducer. We will here go through a compact34 discussion
of the necessary concepts and mathematical structure, using random variables35.

33Citations for each interpretation are obtained from Cabello et al. [2].
34Reader beware. We will not go into enough details for the discussion to be considered

self-contained. Some familiarity with random variables is assumed. Complementary, but brief,
discussions can be found in [2] and [23]. Papers such as [44] discuss some concepts in more
detail, but it lacks a prominent pedagogical approach.

35A random variable, X, is a map between the outcomes of some process and an abstract
set of labels X , called an alphabet. Any particular value which the random variable X can
assume is denoted by a lower case letter, x ∈ X . The process underlying X has some ran-
dom quality (often caused by some physical parameters that are not well understood) that
assigns a probability for each outcome in the alphabet, P (X= x) ∀ x ∈ X , often denoted more
compact as P (X).
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A stochastic process, denoted ↼⇀
Y, is a countably infinite set of time-ordered

random variables.
↼⇀
Y ..= · · · , Y−2, Y−1, Y0, Y1, Y2, · · · ≡ {Yt | t∈ Z} (187)

Each random variable Yt can assume values from the countable alphabet Y, with
a probability distribution {Pt(y)} over the members y ∈ Y, denoted in a more
compact notation as P (Yt). For our purposes, it will be sufficient to consider
finite alphabets Y, but in principle, they can be countably infinite. We shall
use this stochastic process, ↼⇀

Y, to represent outcomes or output, when we take
measurements on the qubit-system.

To construct an input-output process we pair the output ↼⇀
Y with a similar

construct for the input, ↼⇀
X, which represents the randomly chosen measurement

directions in the x-z plane.
↼⇀
X ..= · · · , X−2, X−1, X0, X1, X2, · · · ≡ {Xt | t∈ Z} (188)

Similarly to the previous case, Xt is a random variable that can assume values
from the finite alphabet X , with some probability distribution P (Xt).

Taken together (
↼⇀
X,

↼⇀
Y ) represents an input-output process where we also im-

pose the condition that the choice of measurement direction, Xt, will affect
probabilities of measurement outcomes, thus P (Yt) becomes P (Yt|Xt).

Then Cabello et al. argue that it is appropriate to represent the input-output
process (

↼⇀
X,

↼⇀
Y ) by a minimal representation machine—an epsilon-transducer [44].

A central idea is to introduce a (minimal) set S of so-called causal states, with
the purpose to find the minimum amount of information needed to be stored
in the epsilon-transducer in order to accurately mirror the future statistical
behaviour of the qubit-system in this input-output process. To the causal states
S we also attach a corresponding random variable St that assumes values from
the alphabet S with some probabilities P (St).

Since the causal states are going to distinguish past and future behaviour
we introduce a notation to distinguish between the past and future results of
the input-output process.

↼
X ..= · · · , X−3, X−2, X−1 ;

⇀
X ..= X0, X1, X2, · · · (189)

↼
Y ..= · · · , Y−3, Y−2, Y−1 ;

⇀
Y ..= Y0, Y1, Y2, · · · (190)

Formally, the causal states S are expressed as a partition of the set of input-
output pasts (

↼
X,

↼
Y ) by an equivalence class. In this equivalence class, two mem-

bers (↼x,↼y ) and (↼x ′,↼y ′) are equivalent if and only if the probabilities for future
outcomes ⇀

Y, as a distribution over different future measurement directions ⇀
X,

are equal. Expressed formally as follows.

P(⇀
Y |⇀

X,
↼
X = ↼x,

↼
Y = ↼y ) = P(⇀

Y |⇀
X,

↼
X = ↼x ′,

↼
Y = ↼y ′)

⇒
(↼x,↼y ) ≡ (↼x ′,↼y ′)

(191)

Each member in the equivalence class partition of (
↼
X,

↼
Y ) corresponds to a mem-

ber in the set of causal states, S.
Finally, this construction also includes a set of conditional transition prob-

abilities TP that governs the transitions between the causal states in S. These
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transition probabilities depend on the current measurement direction Xt, and
of course the current causal state St.36

TP
..= {P (St+1 =s′ |St =s,Xt =x)} where s, s′ ∈ S ; x∈ X (192)

These transition probabilities TP induces a stationary probability distribu-
tion {P (s)} over the causal states s ∈ S, or in compact notation, P (S). The
distribution is called stationary since it is taken as a time-independent average
over the time parameter t for the probability of each s ∈ S. The Shannon
entropy of the stationary probability distribution, H({P (s)}) =.. H(S), is called
the statistical complexity, and it represents the minimal amount of information
which our transducer has to be able to encode in order to produce the desired
behaviour. [2]

At this point, it is appropriate to mention that the mathematical machinery
presented so far is more powerful than what we actually require for the rest of the
argument. Thus, some constructs which can be convoluted when presented in
the general case will become clear as we introduce the simplifying circumstances
of our particular problem—taking random measurements in the x-z plane on a
qubit-system.

7.1.4 Information erasure in the causal states, S

In premise 7.2 we assumed that the qubit-system—as modelled with our epsilon-
transducer —does not have infinite memory, i.e. it cannot retain all past infor-
mation about previous causal states, so at some point, it has to start erasing
information. Thus, when the machine is up and running, and has reached its
limit in terms of information storage—the average information to be erased
equals the average amount of information produced at each time-step. We can
therefore equate these two quantities.

The minimum (average) amount of information produced at each time step is
how much entropy remains in St−1, if we average over all possible measurement
directions, measurement outcomes, and causal states; Xt, Yt, and St respectively.
This is calculated using conditional entropy (see section A.9). Then, let ⟨Ie⟩
denote the average amount of information erased at each time step.

⟨Ie⟩ = H(St−1|Xt, Yt, St) (193)

In section 7.1.6 we will simplify this and show that for our particular circum-
stances it is sufficient to only consider a single current causal state, i.e. ⟨Ie⟩ =
H(St−1|St = s) ∀ s ∈ S(n).37

7.1.5 Finding the alphabet sets, X (n), Y(n), and S(n)

We intend for our measurement outcomes of the qubit-system to be isotropically
distributed in the x-z plane. Thus we parameterize the x-z plane with an angle θ,

36In [2], the transition probabilities TP is described as a joint probability distribution over
both St and Yt, but the simplification made in equation (192) is, in fact, sufficient.

37Cabello et al. also includes a condition on the measurement direction Xt, i.e. there
⟨Ie⟩ = H(St−1|Xt = x, St = s).
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over an open interval that corresponds to a semicircle, where each measurement
outcome can be either up or down in each measurement direction.

θ ∈ [0, π) (194)

This interval is then divided into discrete steps of equal size. It turns out that
having the number of measurement directions be a power of two, 2n, will be
convenient for later calculations. Thus we define our set of possible measurement
directions, a.k.a. the input alphabet, X (n), as follows.

θ = πk

2n
; k ∈ {0, 1, · · · , 2n−1} ⇒ (195)

X (n) =
{

cos
(
πk

2n

)
σz + sin

(
πk

2n

)
σx ; k ∈ {0, 1, · · · , 2n−1}

}
(196)

To define an output alphabet Y(n) we can use the set of all possible quantum
states after measurement as labels, and we shall express the states in terms of the
eigenstates of the σz operator, |0⟩ and |1⟩. Note that for each measurement di-
rection in X (n) we have two possible outcomes, +1 or −1, thus |Y(n)| = 2|X (n)|.

|0⟩ ⇔ measuring +1 in the z-direction (197)
|1⟩ ⇔ measuring −1 in the z-direction (198)

A state that corresponds to +1 when measured in the x-z plane, at the angle
χ ∈ [0, π) from the z axis, has the following expression.

|ψχ⟩ = cos
(χ

2

)
|1⟩+ sin

(χ
2

)
|0⟩ (199)

Then, we can expand the angle χ ∈ [0, 2π) to also include measurements of −1,
and parameterize it similar to θ in equation (195).

χ = πj

2n
; j ∈ {0, 1, · · · , 2n+1−1} (200)

Note that j runs over twice as many values compared to k from equation (195),
reflecting the fact that each measurement direction has two outcomes. We then
insert this parametrization into equation (199) to find our set of all possible
states for the qubit-system.

Y(n) =
{

cos
(
πj

2n+1

)
|0⟩+ sin

(
πj

2n+1

)
|1⟩ ; j ∈ {0, · · ·, 2n+1−1}

}
(201)

Since the last measurement outcome is sufficient to predict probabilities of
future measurements in any direction, we can use the same set as for Y(n) to
label our causal states, S(n).

S(n) =
{

cos
(
πj

2n+1

)
|0⟩+ sin

(
πj

2n+1

)
|1⟩ ; j ∈ {0, · · · , 2n+1−1}

}
(202)

Note that the outputs Yt, and the causal states St, are just the possible
physical pure states of the qubit-system. Thus there exist a bijective map (one-
to-one) between Yt, St, and the physical state of the system, where knowing one
will determine the others.
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7.1.6 Calculation
From equation (193) we know that the amount of information that is erased is
the entropy in the causal state before the measurement St−1, that we cannot
learn from St, Xt, and Yt, after the measurement.

⟨Ie⟩ = H(St−1|Xt, Yt, St) (203)

Since there exists a bijective map between Yt and St, no additional information
is contained in the output Yt if we have considered the causal state St. This
means that H(Yt|St) = 0, and Yt in equation (203) is redundant.

⟨Ie⟩ = H(St−1|Xt, St) (204)

Next, there is also a map between St and Xt. If we know the causal state St,
we know the physical state of the system, and thus we know what measurement
direction was used, Xt. This means that H(Xt|St) = 0, and Xt in equation
(203) is also redundant.

⟨Ie⟩ = H(St−1|St) (205)

One further simplification can be made from realizing that the problem is sym-
metric under discrete rotations in the x-z plane, by any angle from the param-
eterization of the measurement outcomes, see equation (200). This is because
the measurement outcomes are uniformly distributed, and the measurement di-
rections are chosen from a uniform probability distribution. This rotational
symmetry implies that the conditional entropy in St−1 will be identical for any
particular choice of current causal state St = s, and we do not have to sum over
all s ∈ S(n).

⟨Ie⟩ = H(St−1|St =s) ∀ s ∈ S(n) (206)

In the appendix, section A.9, we find an explicit expression for conditional
entropy in terms of conditional probability—see equation (274). Since the choice
of current causal state, St = s, does not affect the calculation, we simply select
one that is easy to deal with, St = |0⟩.

⟨Ie⟩ = −
∑

st−1∈S(n)

P(St−1=st−1|St−1= |0⟩) log2

(
P(St−1=st−1|St−1= |0⟩)

)
(207)

The probability P (St−1=st−1|St−1= |0⟩) is calculated from multiplying two prob-
abilities. For the causal state st−1 we have the probability that the appropriate
measurement direction was chosen, then multiplied by the probability of a tran-
sition between the appropriate quantum states, from the Born rule. There are
2n measurement directions, all with equal probability 1/2n. The initial quantum
state is assumed to be |0⟩, and the set of all final states is found in equation (202).

P (St−1 =st−1|St = |0⟩) =

= 1
2n

∣∣∣∣(cos
(
πj

2n+1

)
⟨0|+ sin

(
πj

2n+1

)
⟨1|
)
|0⟩
∣∣∣∣2 =

cos2( πj
2n+1

)
2n

(208)

We insert this into equation (207), and from equation (202), we can see that a
sum over all st−1 ∈ S(n) corresponds to the a sum over j ∈ {0, · · · , 2n+1−1}.

⟨Ie⟩ = −
2n+1−1∑

j=0

cos2( πj
2n+1

)
2n

log2

(
cos2( πj

2n+1

)
2n

)
(209)
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To deal with this we will make some approximations. First, we incorporate the
minus sign into the logarithm and use that cos2 θ < 1 for 0 < θ < π.

⟨Ie⟩ =
2n+1−1∑

j=0

cos2( πj
2n+1

)
2n

log2

(
2n

cos2
(

πj
2n+1

)) > (210)

>
1
2n

2n+1−1∑
j=0

cos2
(
πj

2n+1

)
log2(2n) = n

2n

2n+1−1∑
j=0

cos2
(
πj

2n+1

)
(211)

Since we are interested the behaviour of the system as the number of measure-
ment directions 2n grows, for large n we can convert the sum into an integral
by defining θ ..= πj/2n+1, and introduce an interval π/2n+1 → dθ.

⟨Ie⟩ >
n

2n

2n+1

π

2n+1−1∑
j=0

cos2
(
πj

2n+1

)
π

2n+1 → (212)

→ 2n
π

∫ π

0
cos2 θ dθ = 2n

π

π

2
= n (213)

We have thus found an approximate lower bound on the average information
erased from the epsilon-transducer for each measurement, ⟨Ie⟩.

⟨Ie⟩ > n (for large n) (214)

7.1.7 Unphysical consequence from Landauer’s principle
Cabello et al. then applies the colloquial formulation of Landauer’s principle
(see section 5.2) that “erasure of one bit of information requires a net increase
of heat corresponding to kT ln 2”.

Under the reasonable assumption that we operate in some temperature
T > 0, Landauer’s principle implies that a finite amount of heat—which is
bounded from below—must be dissipated in each measurement, and that the
lower bound will tends to infinity linearly with n (where 2n is the number of
measurement directions).

⟨∆Q⟩ ≥ nk T ln 2 (215)

In conclusion, as the number of measurement directions tend to infinity, so does
the amount of heat that necessarily must be released in each measurement. Such
necessary and unbounded heat dissipations appear unphysical, or at least, it is
an experimentally testable claim.

7.2 Refuting the result from Cabello et al.
The counterargument to the result of Cabello et al. originates from an under-
standing of how Landauer’s principle is conceived and formalized (discussed in
detail through sections 5 and 6).

The classical variety (section 5) introduce a set-up where we encode logical
states in the physical states of some system, and attempts to draw conclusions
about the physical irreversibility of certain logical operations. In section 5 we
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showed that with this set-up, it is possible to argue for the physical irreversibil-
ity proposed by Landauer’s principle (proposition 5.1), though there are some
required assumptions and caveats (see sections 5.7 and 5.9.1).

In this classical setting (again section 5), we partition some set of mutually
exclusive physical microstates {µ} into logical states, and entropies are calcu-
lated from the probability distributions over the microstates {µ}. We note that
it would not be possible to relax the condition that microstates are mutually
exclusive, since entropy, in its most abstract mathematical form, is defined from
probabilities over a set of mutually exclusive events (see section 3.5).

When we later generalize these principles to quantum systems (section 6) we
replace our mutually exclusive microstates {µ} by a set of basis states {|µ⟩}38,
where the previous condition of mutual exclusivity is transformed into the con-
dition that the basis-states are orthogonal. In this framework, von Neumann en-
tropy SN (see section 3.7) can be motivated as the basis for calculating entropies
in physical quantum systems, and thus becomes the basis for generalizing the
Landauer bound and Landauer’s principle (see sections 5.8 and 5.9) to quantum
systems (as we have begun to do in section 6).

SN (ρ̂) ..= −Tr
[
ρ̂ ln ρ̂

]
(216)

Thus we should calculate entropy in a quantum system from the density matrix,
according to equation (216), and the calculation made by Cabello et al. appear
conceptually inaccurate.

When we consider a qubit-system in particular, we only need two orthogonal
states to span its Hilbert space. This implies that entropy in this qubit-system
is, not only bounded from below by 0, but also bounded from above by 1 bit.39

Clearly, the maximum change in entropy is therefore bounded by 1 bit, implying
that the lower bound than Cabello et al. suggested, from equation (215), cannot
go to infinity. In fact, any lower bound cannot go above k T ln 2.

⟨∆Q⟩ ≥ k T ln 2 (217)

The incorrect conclusion arises for Cabello et al. because the entropy is calcu-
lated over the set of causal states S(n) of the epsilon-transducer, where the set of
causal states does not correspond to some set of orthogonal states (as is required
when we generalize from mutually exclusive states) instead the physical states
corresponding to S(n) are strongly linearly dependent—see equation (202).

In conclusion, it is premise 7.3 (see section 7.1.2) that fails. Not because
Landauer’s principle does not hold, but because it does not apply to decreases
of entropy associated with causal states in this particular set-up. See paragraph
(d) in section V. of [2], where Cabello et al. presents a short discussion related
to this point.

7.2.1 Substitute argument
Replacing the argument made by Cabello et al. requires much less work than
we went through in section 7.1.

38Technically, we use the density operator ρ̂ that can be considered without choosing a
basis, but when the entropy is evaluated we choose some basis of states to calculate the trace
(further details in sections 3.7 and A.4).

39Left to the reader as an exercise.
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Because we are making measurements on the qubit-system—from the point
of view of the measurement device (which is the system interacting with the
qubit), the state is always pure after each measurement. Therefore we here
argue that the entropy should be calculated from a pure state, becoming zero
at each time step, and hence the change in entropy is zero. Then, Landauer’s
principle does no longer demand any minimal heat expenditure, and the differ-
ence between the two classes of interpretations of Quantum Mechanics, type I
and type II, goes away.

⟨∆Q⟩ ≥ 0 (218)

We note that Prunkl and Timpson [23] makes a slightly different argument,
claiming that: “It is clear that once the measurement process is up and running,
the quantum system will be in a maximally mixed state at each time step,
independent of the chosen measurement basis.” But here, we argue that a
pure state is more appropriate to model the qubit-system after a measurement.
But regardless of whether we consider the state to remain pure, or maximally
mixed—there is no change of entropy in either approach. We therefore arrive
at the same conclusion—that we unfortunately cannot infer any lower bound
on heat expenditure from the choice of interpretation of Quantum Mechanics.
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8 Conclusions

Since each section in this thesis essentially presents an inde-
pendent point, there are few all-encompassing conclusions left to
discuss. Instead, we shall focus on the question of how some sec-
tions (4, 5 and 6) could be further explored in their own right.

We then indulge in some grandiose speculations about the fun-
damental question that Cabello et al. intended to address (see
section 7)—the measurement problem—and we conclude this the-
sis with a proposition for third additional classification—not de-
scribed by Cabello et al.—for the origin of probabilities in Quan-
tum Mechanics.

8.1 Further work
There are several places in this thesis that present opportunities to conduct
further research into various interesting directions. Ultimately, time constraints
put boundaries on what lines of thought could be pursued.

8.1.1 Section 4 – The principle of maximum entropy inference
Extension. In section 4.1 we envision a stricter argument to motivate the
use of the principle of maximum entropy inference. However, this presentation
is not complete without some examples of what the biased assumption C ′ will
represent in some actual case (see section 4.1). If there is a demand for a stricter
motivation of the principle of maximum entropy inference, investigating this line
of thought can be an interesting pursuit.

8.1.2 Section 5 – Landauer’s principle in Classical Physics
There is still work to be done before consensus about Landauer’s principle can
be attained. In section 5 we hope the reader can find a contribution to this
debate, but it is by no means resolved.

There are a number of different ways to extend the argument. The most
obvious is to base the argument on more general assumptions (section 5.3).
Clearly, this comes with the risk of obfuscating the core conceptual points, but
the whole argument could become applicable in a broader range of situations,
and thus more worthwhile to communicate to a larger community.

Extension I. We could distinguish logical states for input and output, and then
allow for alphabet sets of any finite size, i.e. {0, 1} → {0, 1, · · ·, n} in section 5.3.1.
That way the analysis will encompass the logic of any kind of gate and not just
manipulation of individual bits. �

Extension II. We could have expanded the argument to include logical opera-
tions that are inherently random to some degree (compare to section 5.3.2) as
Maroney does this in his 2009 paper [20]. The consequences of this modification
are not trivial to predict, since Maroney’s treatment deviates from the structure
of our argument (see section 5.13). �
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Extension III. It would be desirable to investigate in greater detail the impli-
cations of requiring a process to be entropy restoring, or conforming to uniform
computing (see section 5.7). In particular, to compare the constraints with
some concrete computing devices, and look for examples of physical processes
that would adhere to, or break, the assumptions. A desirable claim would be
that all computation devices operate under some version of uniform computing
where Landauer’s principle can be derived. �

Extension IV. Finally, the argument in section 5.9 is rather subtle and could
be weak to counterarguments—as pointed out in section 5.9.1. It would be
beneficial to collect critical peer evaluation to be able to strengthen weak points
and address potential concerns. �

8.1.3 Section 6 – A Landauer bound in Quantum Mechanics
Extension I. It is not obvious whether any density operator associated with a
finite-dimensional Hilbert space is sufficient for faithfully modelling a thermal
reservoir. A required property of any reservoir is to be large enough for its
temperature (here reciprocal temperature β) to stay constant under interactions
with some system of interest. Clearly, this is not guaranteed to be the case
when systems are exchanging entropy and energy, since temperature is defined
in terms of these.

β ..= 1
k

∂S

∂⟨E⟩
(219)

The first step to create a realistic model is to introduce a compact spectrum of
numerous energy eigenstates for the Hamiltonian of the thermal reservoir. We
may also want to consider a separable Hilbert space (see section 2). �

Extension II. The motivation Reeb and Wolf supplies for why energy ex-
changes between system and reservoir are considered only as heat and never
as work (see section 6.2), may not be entirely conclusive. More careful investi-
gations into how to define heat and work in Hamiltonian interactions may reveal
some caveats. �

Extension III. To begin extending section 6 to the scope of section 5, we
would need to define logical states in terms of the underlying physical state, ρ̂S

(compare to section 5.3.1). Then we can encode classical information in our
state for S, and think about what kind of Hamiltonian on the entire closed
system C can compress the state space of S in order to recreate the logical reset
process (PS

0 from section 5.3.8). �

8.2 The measurement problem
Since the initial motivation of this thesis was to investigate the role of prob-
abilities in Quantum Mechanics, we shall briefly discuss some of the author’s
personal attitudes in relation to the measurement problem. Naturally, this sec-
tion contains some wild speculations, reflecting the attitude of the author at
the time of writing. Towards the end, we will argue for a third additional
classification for the origin of probabilities, not discussed by Cabello et al. [2].

In short, the measurement problem stems from the conflict between the su-
perposition principle in Quantum Mechanics—allowing systems to be in any
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superposition of states—and the limitation of a much smaller state space in
Classical Physics, where no superpositions exist. It is clear that the quantum
description of the world should be considered more fundamental than classical
theories, but still, on macroscopic scales we observe a behaviour that appears
restricted to the classical framework. [45]

At the heart of this conflicts sits the “collapse of the wave function”, i.e. an
event wherein the unitary evolution of quantum systems no longer agrees with
experiments. Shoot an electron at a double slit setup, and the Schrödinger
equation predicts the evolution perfectly, up until the point when the particle
hits the detection screen, and a superposition of positions can no longer be an
acceptable experimental outcome, instead the electron has to end up at some
particular position with some probabilities determined from the Born rule. We
label these unitarity-breaking situation as “measurements”, and allow for a dif-
ferent projective evolution to take place. Colloquially, and in the language of
the Copenhagen interpretation, we can say that the wave function collapses.

But there is no consensually agreed-upon formal definition of what actually
counts as a measurement, and there is no agreed-upon mechanism for a state
to go from the superposition of outcomes, to one definite outcome. The latter
problem is termed the problem of definite outcomes, it only constitutes half of
the measurement problem [45], and it will be our focus here. The other half, the
problem of the preferred basis, will not be discussed.

8.2.1 Interpretation versus explanation
There is a multitude of interpretations of Quantum Mechanics, trying to account
for the measurement problem. While some interpretations provide accounts on a
more philosophical level—supplying some “attitude” towards the measurement
problem, without providing any testable predictions. Here we shall argue that
we ought to be looking for an “explanation”—meaning some set of ideas that (at
least in principle) can produce testable predictions. The decoherence program
[46], aligns somewhat with such ambitions (expressing a part of the process
in terms of physical interactions), but here we will argue that the idea fails to
provide a complete physical description of a transition to from a decohered state
to a definite measurement outcome.

Then, lacking a completely satisfactory physical model we can apply an
“interpretational band-aid”, and say that the world splits into a myriad of dif-
ferent outcomes (the many-worlds interpretation). But such interpretations do
not supply testable predictions (the worlds are assumed to be fundamentally
inaccessible after an outcome is registered).

8.2.2 Proposition for a third additional class of interpretations of
Quantum Mechanics

If one consider von Neumann entropy SN (section 3.7) as a quantum mechanical
counterpart of thermodynamic entropy, to which something like the second law
of thermodynamics (axiom 3.4) should apply, and then adopts the framework
of decoherence [46], it is possible to argue that quantum states evolve from
an initial pure state with low entropy, to a mixed state with some classical
probability distribution of different outcomes, having high entropy. However,
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actual measurement outcomes are of course some particular outcome from the
probability distribution, with low entropy again.

Initial pure state ←→ S = 0

State after decoherrence ←→ S > 0

Single measurement outcome ←→ S = 0

The transition from a pure state to a mixed one is not that problematic—it
rhymes with the second law of thermodynamics, which allows for entropy to
increase. However, the transition from a decohered mixed state to a pure mea-
surement outcome is more problematic since it should obey a Landauer bound.
Whether we say that the bound should be upheld due to the second law of ther-
modynamics (axiom 3.4), or we simply consider a derivation as the one carried
out in section 6, the entropy of the total system should not decrease. Thus when
the entropy of the state decreases, it is not so clear where the complementary
increase should take place.

The proposition here is that during decoherence, we do not expect there to
be some increase in the number of quantum states that are somehow occupied by
the system, but instead it is our ignorance about the actual state that increases.
Or put differently, we expect the state to always be pure, and the increase in
entropy indicates that we have lost some information about which pure state is
occupied at all times.

This can seem strange since we had full information about the state to begin
with, but we can argue that the uncertainty is introduced as soon as the particle
starts interacting with the measurement device—a macroscopic object to which
we have no chance of knowing its precise state and Hamiltonian. Therefore
their joint evolution inevitably contains some uncertainty which spills over to
the quantum system as a mixed state.

The conjecture is therefore that—given the actual pure state for the entire
measurement device, and the time-dependent Hamiltonian for the combined sys-
tem at all times, we should in principle be able to predict what the measurement
outcome will be, however no model of an interaction between a quantum system,
and a macroscopic object big enough to be a measurement device (completely
modelled in Quantum Mechanics), has yet been analyzed in enough detail.

Comparing this idea with the two classes proposed by Cabello et al. (see
section 7.1.1) it is clear that we can conjecture an additional third class.

Definition 8.1 (Type III). Type III explanations consider quantum prob-
abilities for measurement outcomes as originating from partially unknown
interactions with, typically large, external systems in unknown states. �
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A Appendix
A.1 The spectral theorem for finite matrices
Here we prove a theorem about complex normal (square) matrices. A normal
matrix A satisfies AA† = A†A, and therefore, both Hermitian and unitary ma-
trices are subsets of normal matrices.

Theorem A.1 (Spectral theorem for normal matrices). Let A be an
n×n normal matrix, i.e. AA† = A†A. Then A can be decomposed in terms
of a diagonal matrix Λ, containing the eigenvalues of A on the diagonal,
and a unitary matrix U .

A = UΛU† (220)

The proof we provide here will assume Schur decomposition.

Lemma A.1 (Schur decomposition). Let A be an n×n complex matrix.
Then A can be expressed in terms of an upper triangular matrix T , which has
the eigenvalues of A on its diagonal, and an unitary matrix U .

A = UTU† (221)
�

Proof (Theorem A.1). We can use Schur decomposition (lemma A.1) to
rewrite our normal matrix A in terms of an upper triangular matrix T and
an unitary matrix U . Then it remains to show that T is, in fact, diagonal.

A = UTU† ⇒ T = U†AU ⇒ T † = U†A†U (222)

We first show that the upper triangular matrix T is normal.

TT † = U†AUU†A†U = U†AA†U = U†A†AU = U†A†UU†AU = T †T (223)

Then we consider the element in first row and first column of T †T .

(T †T )11 =
∑

j

t∗j1tj1 (224)

Since T is upper triangular we have that tab = t∗ab = 0 if a > b. This means
that in the sum above, only one terms survives.

(T †T )11 = t∗11t11 = |t11|2 (225)

However, considering the same position in TT † gives a different result.

(TT †)11 =
∑

j

t1jt
∗
1j = |t11|2 + |t12|2 + · · · (226)

Since TT † = T †T , according to equation (223), all entries in the first row,
except t11, must vanish; i.e. t1i = 0 ∀ i ̸= 1. And we already knew that all
entries in the first column (except t11) are zero.
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Then we look at the element (T †T )22.

(T †T )22 = t∗22t22 = |t22|2 (227)

And also (TT †)22, using the result from the first row, i.e. t1i = 0 ∀ i ̸= 1, we
find the following.

(TT †)22 =
∑

j

t2jt
∗
2j = |t22|2 + |t23|2 + · · · (228)

Then every entry in the second row of T (except t22) must vanish. Repeating
this procedure n times, we see that when we are done T will be diagonal. �

A.2 Obtaining the canonical expression for ρ̂

The corresponding finite-dimensional case of the spectral theorem, theorem A.1 in
section A.1, applies to density operators defined according to axiom 2.1. However
the spectral theorem is most commonly found in matrix representation, and in
Quantum Mechanics there is another prolific representation, as seen below (see
equation (5) of section 2).

ρ̂ =
n∑

i=1
Pi |ϕi⟩⟨ϕi| (229)

Here we will demonstrate how to think about the transition between the two.
First, consider some basis of Hn such that the operator ρ̂ can be expressed

as a matrix. According to the spectral theorem (see section A.1), we know that
ρ̂ can be written as a diagonal matrix Λ with the eigenvalues on the diagonal,
sandwiched between a unitary matrix U and its Hermitian conjugate.

ρ̂
.= UΛU† (230)

Note that we will put a dot above equal signs when we make some transition be-
tween operator notation (common in Quantum Mechanics), and matrix notation
given some basis of Hn.

From further theorems about unitary matrices, we know that all eigenvalues
of U lies on the complex unit circle, and we also know that U has an orthogonal
set of eigenvectors {|ϕi⟩} (which we consider normalized) and they span the
whole Hn. Thus, {|ϕi⟩} is an orthonormal basis for Hn. Then, consider some
arbitrary vector |Ψ⟩ is expressed in the basis for U .40

Ψ .=
n∑

i=1
|ϕi⟩⟨ϕi|Ψ⟩ (231)

Applying (say) U† to this vector will be very straight forward; we just multiply
each component with its corresponding eigenvalue, { e−iθi}.

U†Ψ .=
n∑

i=1
e−iθi |ϕi⟩⟨ϕi|Ψ⟩ (232)

40Expressing |Ψ⟩ in terms of a basis corresponds to projections onto that basis using the
inner product.
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We are now ready to look at the density operator ρ̂. Let us denote the eigenvalues
in Λ as {Pi}, and consider the situation where ρ̂ is acting on |Ψ⟩.

ρ̂ |Ψ⟩ .= UΛU†Ψ .=

.= UΛ

n∑
i=1

e−iθi |ϕi⟩⟨ϕi|Ψ⟩
.= U

n∑
i=1

Pi e−iθi |ϕi⟩⟨ϕi|Ψ⟩
.=

.=
∑
i,j

eiθiPi e−iθi |ϕj⟩⟨ϕj |ϕi⟩⟨ϕi|Ψ⟩ =
n∑

i=1
Pi |ϕi⟩⟨ϕi|Ψ⟩

(233)

After the last step we have an expression for ρ̂ |Ψ⟩, but we are looking for an
expression for the operator ρ̂ alone. We can simply leave the last slot in the
inner product empty.

ρ̂ =
n∑

i=1
Pi |ϕi⟩⟨ϕi|·⟩ (234)

Here, the dot means that we should insert whatever ρ̂ is applied on in its place.
However, it is more common to leave out the dot and the closing bracket—for
a more compact and aesthetic notation.

ρ̂ =
n∑

i=1
Pi |ϕi⟩⟨ϕi| (235)

The notation |ϕi⟩⟨ϕi| is then interpreted as a scalar product of the vector |ϕi⟩
and the inner product ⟨ϕi|·⟩ taken with whatever ρ̂ is applied to.

A.3 The logarithm of an operator
The natural logarithm of an operator Â, associated with a finite Hilbert space
Hn, is defined as the operator X̂, whose exponential series expansion produces Â.

Find X̂ such that eX̂ = Â

where

eX̂ ..=
∞∑

n=0

1
n!
X̂n

(236)

We then make the following definition.

ln Â ..= X̂ (237)

We note that there is generally no guarantee that such X̂ exists, and if it
does exist there may be many. There are, however, theorems that allows one to
determine if none, one, or several solutions exist. Here we will simply state the
theorems and provide references for the reader.

Theorem A.2. An operator has Â has at least one logarithm if and only
if it is invertible.
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See Theorem 1.27 in the book “Functions of Matrices: Theory and Computation”
by Nicholas Higham, [47].

Theorem A.3. An operator has B̂ has a unique logarithm if it has no
eigenvalues on the negative real axis.

See Theorem 1.31 in the book “Functions of Matrices: Theory and Computation”
by Nicholas Higham, [47].

A.4 Invariance of the trace

Lemma A.2. Consider a normal operator, i.e. ÂÂ† = Â†Â, associated with
the finite Hilbert space Hn. The trace of Â is invariant under the choice of
basis in which the trace is taken.

Proof (Lemma A.2). By definition, the trace of some normal operator Â, is
the sum over an arbitrarily chosen orthonormal and complete basis {|φi⟩} for
Hn, where we take the inner products with with each basis vector.

Tr
[
Â
] ..=

n∑
i=1
⟨φi|Âφi⟩ (238)

Since Â is assumed to be normal, we can use the spectral theorem (see section
A.1 and A.2) to rewrite the operator on its diagonal form, in some diagonalizing
basis {|ϕi⟩}.

Â =
n∑

j=1
λj |ϕj⟩⟨ϕj | (239)

Inserting equation (239) into (238), we can express the trace of Â explicitly.

Tr
[
Â
]

=
∑
i,j

λj ⟨φi|ϕj⟩ ⟨ϕj |φi⟩ (240)

We rearrange the inner products and identify a unit operator (possible since
{|φi⟩} is a complete orthonormal basis).

Tr
[
Â
]

=
n∑

j=1
λj

n∑
i=1
⟨ϕj |φi⟩ ⟨φi|ϕj⟩ =

n∑
j=1

λj ⟨ϕj |ϕj⟩ =
n∑

j=1
λj (241)

Thus Tr
[
Â
]

is invariant under the choice of {|φi⟩}. �
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A.5 Invariance of von Neumann entropy under unitary
transformations

Lemma A.3 (Invariance of von Neumann entropy). The von Neu-
mann entropy SN (ρ̂) ..= Tr

[
ρ̂ ln ρ̂

]
of a density operator ρ̂, as defined in

axiom 2.1 (see section 2), is invariant under unitary transformations.

SN (Ûρ̂ Û†) = SN (ρ̂) (242)

Proof (Lemma A.3). First, it is easy to show41 that eÛX̂Û† = Û eX̂ Û†, using
the definition of the exponential (see section A.3). We will then prove that
ln(Ûρ̂ Û†) = Û ln(ρ̂) Û†. From section A.3 we know that ln(Ûρ̂ Û†) =..X̂ for the
X̂ that solves the following.

eX̂ = Ûρ̂ Û† ⇒ Û† eX̂ Û = ρ̂ ⇒ eÛ†X̂Û = ρ̂ (243)

Then Û†X̂Û , is the logarithm of ρ̂.

ln(ρ̂) = Û†X̂Û = Û† ln(Ûρ̂ Û†)Û ⇒ (244)

Û ln(ρ̂)Û† = ln(Ûρ̂ Û†) (245)

With this, and the fact that the trace is invariant under unitary transformations
(equivalent of choosing a different basis, see section A.4), we can complete our
proof.

SN (Ûρ̂ Û†) = Tr
[
Ûρ̂ Û† ln(Ûρ̂ Û†)

]
= Tr

[
Ûρ̂ Û†Û ln(ρ̂)Û†

]
= (246)

= Tr
[
Û ρ̂ ln(ρ̂)Û†

]
= Tr

[
ρ̂ ln ρ̂

]
= SN (ρ̂) (247)

�

A.6 Relative entropy

Theorem A.4 (Properties of relative entropy). Consider two den-
sity operators ρ̂1 and ρ̂2, both associated with the same finite-dimensional
Hilbert space Hn (see axiom 2.1). Then the relative entropy S(ρ̂1∥ρ̂2) as
defined below, assumes only non-negative values, and is zero if and only if
ρ̂1 = ρ̂2.

S(ρ̂1∥ρ̂2) ..= −Tr
[
ρ̂1 (ln ρ̂2 − ln ρ̂1)

]
(248)

We will not provide proofs for the properties of relative entropy, but simply
mention that the they are supported by the so called Klein’s inequality. See
Alfred Wehrl’s paper for further discussions and proofs, [48].

Intuitive understanding of relative entropy is most straight forward to build
in a classical framework (with classical probability distributions), where relative

41Left to the reader as an exercise.
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entropy is called Kullback-Leibler divergence. Consider two probability distribu-
tions P = {Pi} and Q = {Qi} over the same finite set of events. The classical
relative entropy, DKL, is very similar as in Quantum Mechanics, equation (248).

DKL(P ||Q) ..= −
∑

i

Pi( lnQi − lnPi) (249)

Most resources discuss the relative entropy as a distance-like measure, an-
swering the question: “How much information is lost if we approximate a true
probability distribution {Pi} with an approximate distribution {Qi}?”. Note
however that it cannot be an actual distance measure, since relative entropy is
not symmetric with respect to {Pi} and {Qi}.

Another quirk of relative entropy that is worth our attention is that it is
not bounded, even on a finite set of events. If the probability distribution Q
contains some events that has a zero probability, but the corresponding event
in P is non zero we get an infinite term.

− Pi( ln 0− lnPi) =∞ for 0 < Pi ≤ 1 (250)

A.7 Spectra of product operators
Here we want to determine what we can say about the spectra (the set of eigen-
values) of a finite dimensional operator, if it happens to be a product operator
of two operators with known spectra.

Lemma A.4 (Spectra of product operators). Consider two normal
operators Â and B̂, associated with the finite Hilbert spaces Hm and Hn

respectively. Let the spectra of Â be {ai}, and the spectra of B̂ be {bi}. Con-
struct their product operator P̂ , associated with the Hilbert space Hm×n.

P̂ = Â×fB̂ (251)

The spectra of P̂ is {aibj}.

Proof (Lemma A.4). Since Â and B̂ are normal, we can use the spectral
theorem (see sections A.1 and A.2) and express them on their diagonal form.

Â =
m∑

i=1
ai |ai⟩⟨ai| (252)

B̂ =
n∑

j=1
bj |bj⟩⟨bj | (253)

According to the spectral theorem, {|ai⟩} is an orthonormal basis for Hm, and
|bj⟩ is an orthonormal basis for Hn. We can then form a basis for Hm×n by
taking the tensor product of the two bases.

{ |ai⟩×f|bj⟩ } is an orthonormal basis for Hm×n (254)
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We apply P̂ to the set of basis vectors {|ai⟩×f|bj⟩}.

P̂ ( |ai⟩×f|bj⟩ ) =

=

((∑
k

ak |ak⟩⟨ak|
)
×f(∑

ℓ

bℓ |bℓ⟩⟨bℓ|
))

( |ai⟩×f|bj⟩ ) =
(255)

= aibj( |ai⟩×f|bj⟩ ) (256)

We see that |ai⟩×f|bj⟩ is an eigenvector of P̂ , with the eigenvalue aibj . �

A.8 Normal matrices under unitary transformations

Lemma A.5 (Eigenvalues under unitary transformations). Let A be
a complex normal matrix, AA† = A†A. Let B be the result of a invertible
transform V , applied to A, such that B is also normal.

B ..= VAV −1 ; BB† = B†B (257)

V is unitary, if and only if, the eigenvalues of B are the same as the eigen-
values of A.

Proof (Lemma A.5). First, we prove that if V is unitary, the eigenvalues
are the same. Since A is a normal matrix, we know from the spectral theorem
(section A.1) that it can be written as a decomposition with a diagonal matrix
Λ containing the eigenvalues of A, and a unitary matrix U .

A = UΛU† (258)

Then B becomes the following.

B = V UΛU†V −1 = V UΛU†V † = V UΛ(V U)† (259)

We define W ..= V U , and rewrite B.

B = WΛW † (260)

We then prove that W is unitary, from the knowledge that U and V are unitary.

WW † = V U (V U)† = V U U†V † = 1 (261)

W †W = (V U)†V U = U†V †V U = 1 (262)

This proves that the eigenvalues of B are the the same as for A; the diagonal
elements of Λ.

Next, we prove that if A and B have the same eigenvalues, V is unitary.
Since A and B are normal, we can use the spectral theorem again (section A.1).
Since we assume the eigenvalues of A and B to be equal, we can use the same
diagonal matrix, Λ, for both decompositions.

A = UΛU† ; B = WΛW † (263)
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But according to equation (257), B can also be written in terms of A.

WΛW † = B
(257)= VAV −1 = V UΛU†V −1 (264)

Comparing the left hand side and the right hand side, we see that W = V U and
W † = U†V −1. From the latter relation, since W is unitary, U†V −1 is unitary.

U†V −1(U†V −1)† = 1 ⇒ (265)

U†V −1 (V −1)†U = 1 ⇒ (266)

V −1 (V −1)† = 1 ⇒ (267)

(V −1)† = V ⇒ (268)

V −1 = V † (269)

Thus V is unitary. �

A.9 Conditional entropy
Note, this section and the next assumes some familiarity with random variables.

Say we want to look at the Shannon entropy (section 3.5) in a certain random
variable X, belonging to the alphabet X , but there exist some correlation with
some other random variable Y, of the alphabet Y. So the value of Y does not
necessarily determine X, but it can affect the probabilities. We can then talk
about the entropy that remains in X, for any specific value y ∈ Y.

H(X |Y =y) (270)

Clearly, to evaluate this using the definition of Shannon entropy—see equation
(12) in section 3.5—we require some description of the probabilities of X = x
for every case of Y = y. This probability of x, given y, is called the conditional
probability, and denoted as P (x|y).

H(X |Y =y) = −
∑
x∈X

P (x|y) log2(P (x|y)) (271)

This can be interpreted as quantifying the entropy that remains in X, for some
particular value Y = y. Then, from this construct we can create the so called
conditional entropy, H(X|Y ), by simply averaging over every y, weighted with
its probability.

H(X |Y ) ..=
∑
y∈Y

P (y)H(X |Y =y) = (272)

= −
∑
y∈Y

(
P (y)

∑
x∈X

P (x|y) log2(P (x|y))
)

⇒ (273)

H(X |Y ) = −
∑
x,y

P (y)P (x|y) log2(P (x|y)) (274)

We can rewrite this using a so called probability mass function P (x, y) (a.k.a.
joint probability distribution, or diagram probabilities in Shannon [9]) that treats
both random variables, X and Y , symmetrically.
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P (x, y) = P (x)P (y|x) = P (y)P (x|y) (275)

⇒

H(X |Y ) = −
∑
x,y

P (x, y) log2

(
P (x, y)
P (y)

)
(276)

Note that probabilities of individual variables, P (x) and P (y), can be obtained
from the probability mass function P (x, y).

P (x) =
∑
y∈Y

P (x, y) ; P (y) =
∑
x∈X

P (x, y) (277)

Whether we use equation (274) or (276) is a matter of what probabilities are
most conveniently accessible.

A.10 Mutual information
Let the outcome of a random variable X have some correlation with the outcome
another random variable, Y . The purpose of the so called mutual information
is to quantify this correlation. Here we derive and discuss the expression for
this mutual information denoted by I(X :Y ).

Starting from quantifying the uncertainty, a.k.a. entropy, of a random vari-
able X, we can ask how much the entropy is reduced, ∆H if we learn that Y
has some specific value y.

∆H(Y =y) = H(X)−H(X |Y =y) (278)

The mutual information is simply average over all possible values, y ∈ Y,
weighted by their probabilities.

I(X :Y ) =
∑
y∈ Y

P (y)
(
H(X)−H(X |Y =y)

)
=

= H(X)−
∑
y∈ Y

P (y)H(X |Y =y)
(279)

The last term is the conditional entropy, H(X |Y ), as discussed in section A.9.

I(X :Y ) = H(X)−H(X |Y ) (280)

Using the definition of Shannon entropy from section 3.5, equation (12), and
equalities from section A.9, equations (276) and (277), we can rewrite this ex-
pression in a more useful format, based on the probability mass function, P (x, y).

I(X :Y ) = H(X)−H(X |Y ) =

= −
∑
x∈X

P (x) log2(P (x)) +
∑
x,y

P (x, y) log2

(
P (x, y)
P (y)

)
=

= −
∑
x,y

P (x, y) log2(P (x)) +
∑
x,y

P (x, y) log2

(
P (x, y)
P (y)

)
⇒

(281)
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I(X :Y ) =
∑
x,y

P (x, y) log2

(
P (x, y)
P (x)P (y)

)
(282)

Here, we can clearly see that mutual information is symmetric with respect to
the two random variables X and Y .

Further is is also possible to show that it is non-negative, equal to zero if
and only if X and Y are independent, and if the mutual information equals the
entropy of X, then X is completely determined by Y , see [49].
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